import streamlit as st from sentence_transformers import SentenceTransformer, util from transformers import (AutoModelForQuestionAnswering, AutoTokenizer, pipeline) import pandas as pd import regex as re # Select model for question answering model_name = "deepset/roberta-base-squad2" # Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Create pipeline pipe = pipeline('question-answering', model=model_name, tokenizer=model_name) # Load DFA Press Release dataset df = pd.read_csv('dfa_pr_v5_cleaned.csv', nrows=500) # Group into 6 sentences-long parts partitions = df['article'].values.tolist() st.title('DFA Press Releases - Question Answer Bot') # Type in HP-related query here query = st.text_area("Type in your question below:") if st.button('Search for the answer'): # Perform sentence embedding on query and sentence groups model_embed_name = 'sentence-transformers/msmarco-distilbert-dot-v5' model_embed = SentenceTransformer(model_embed_name) doc_emb = model_embed.encode(partitions) query_emb = model_embed.encode(query) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(partitions, scores)) #Sort by decreasing score and get only 3 most similar groups doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)[:1] # Join these similar groups to form the context context = "".join(x[0] for x in doc_score_pairs) # Perform the querying QA_input = {'question': query, 'context': context} res = pipe(QA_input) confidence = res.get('score') if confidence > 0.8: st.write(res.get('answer')) else: out = "I am not sure." st.write(out) #out = res.get('answer')