import torch import os from transformers import pipeline, VitsModel, VitsTokenizer, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor import numpy as np os.system("pip install git+https://github.com/openai/whisper.git") import gradio as gr import whisper model = whisper.load_model("small") device = "cuda:0" if torch.cuda.is_available() else "cpu" def inference(audio): audio = whisper.load_audio(audio) print("loading finished") audio = whisper.pad_or_trim(audio) print("audio trimed") mel = whisper.log_mel_spectrogram(audio).to(model.device) print("spectro finished") _, probs = model.detect_language(mel) print("lang detected") options = whisper.DecodingOptions(fp16 = False) print("options decoded") result = whisper.decode(model, mel, options) print(result.text) return result.text # Load Whisper-small pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=device ) # Load the model checkpoint and tokenizer #model = VitsModel.from_pretrained("Matthijs/mms-tts-eng") #tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-eng") model2 = VitsModel.from_pretrained("facebook/mms-tts-eng") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") # Define a function to translate an audio, in english here def translate(audio): # return inference(audio) outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] # Define function to generate the waveform output def synthesise(text): inputs = tokenizer(text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model2(input_ids) return outputs.audio[0] # Define the pipeline def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = ( synthesised_speech.numpy() * 32767).astype(np.int16) return [translated_text, (16000, synthesised_speech)] def predict(transType, language, audio, audio_mic = None): print("debug1:", audio,"debug2", audio_mic) if not audio and audio_mic: audio = audio_mic if transType == "Text": return translate(audio), None if transType == "Audio": return speech_to_speech_translation(audio) # Define the title etc title = "Swedish STSOT (Speech To Speech Or Text)" description="Use Whisper pretrained model to convert swedish audio to english (text or audio)" supportLangs = ["Swedish", "French (in training)"] transTypes = ["Text", "Audio"] #examples = [ # ["Text", "Swedish", "./ex1.wav", None], # ["Audio", "Swedish", "./ex2.wav", None] #] examples =[] demo = gr.Interface( fn=predict, inputs=[ gr.Radio(label="Choose your output format", choices=transTypes), gr.Radio(label="Choose a source language", choices=supportLangs, value="Swedish"), gr.Audio(label="Import an audio", sources="upload", type="filepath"), #gr.Audio(label="Import an audio", sources="upload", type="numpy"), gr.Audio(label="Record an audio", sources="microphone", type="filepath"), ], outputs=[ gr.Text(label="Text translation"),gr.Audio(label="Audio translation",type = "numpy") ], title=title, description=description, article="", examples=examples, ) demo.launch()