from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel from diffusers.utils import load_image from diffusers import ( DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ) import torch import os import random import numpy as np from PIL import Image from typing import Tuple import gradio as gr DESCRIPTION = """ # CosmicMan - CosmicMan: A Text-to-Image Foundation Model for Humans (CVPR 2024 (Highlight)) """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" schedule_map = { "ddim" : DDIMScheduler, "pndm" : PNDMScheduler, "lms" : LMSDiscreteScheduler, "euler" : EulerDiscreteScheduler, "euler_a": EulerAncestralDiscreteScheduler, "dpm" : DPMSolverMultistepScheduler, } examples = [ "A fit Caucasian elderly woman, her wavy white hair above shoulders, wears a pink floral cotton long-sleeve shirt and a cotton hat against a natural landscape in an upper body shot", "A closeup of a doll with a purple ribbon around her neck, best quality, extremely detailed", "A closeup of a girl with a butterfly painted on her face", "A headshot, an asian elderly male, a blue wall, bald above eyes gray hair", "A closeup portrait shot against a white wall, a fit Caucasian adult female with wavy blonde hair falling above her chest wears a short sleeve silk floral dress and a floral silk normal short sleeve white blouse", "A headshot, an adult caucasian male, fit, a white wall, red crew cut curly hair, short sleeve normal blue t-shirt, best quality, extremely detailed", "A closeup of a man wearing a red shirt with a flower design on it", "There is a man wearing a mask and holding a cell phone", "Two boys playing in the yard", ] style_list = [ { "name": "(No style)", "prompt": "{prompt}", "negative_prompt": "", }, { "name": "Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", }, { "name": "Photographic", "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", }, { "name": "Anime", "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", }, { "name": "Fantasy art", "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", }, { "name": "Neonpunk", "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", } ] styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "(No style)" CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" MAX_SEED = np.iinfo(np.int32).max NUM_IMAGES_PER_PROMPT = 1 def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) if not negative: negative = "" return p.replace("{prompt}", positive), n + negative class NoWatermark: def apply_watermark(self, img): return img def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed print("Loading Model!") schedule: str = "euler_a" base_model_path: str = "stabilityai/stable-diffusion-xl-base-1.0" refiner_model_path: str = "stabilityai/stable-diffusion-xl-refiner-1.0" unet_path: str = "cosmicman/CosmicMan-SDXL" SCHEDULER = schedule_map[schedule] scheduler = SCHEDULER.from_pretrained(base_model_path, subfolder="scheduler") # unet = UNet2DConditionModel.from_pretrained(unet_path) pipe = StableDiffusionXLPipeline.from_pretrained( base_model_path, # unet=unet, scheduler=scheduler, use_safetensors=True ).to("cuda") pipe.watermark = NoWatermark() refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( base_model_path, # we found use base_model_path instead of refiner_model_path may get a better performance scheduler=scheduler, use_safetensors=True ).to("cuda") refiner.watermark = NoWatermark() print("Finish Loading Model!") def generate_image(prompt, n_prompt="", style: str = DEFAULT_STYLE_NAME, steps: int = 50, height: int = 1024, width: int = 1024, scale: float = 7.5, img_num: int = 4, seeds: int = 42, random_seed: bool = False, ): print("Beign to generate") image_list = [] for i in range(img_num): seed = int(randomize_seed_fn(seeds, random_seed)) generator = torch.Generator().manual_seed(seed) positive_prompt, negative_prompt = apply_style(style, prompt, n_prompt) image = pipe(positive_prompt, num_inference_steps=steps, guidance_scale=scale, height=height, width=width, negative_prompt=negative_prompt, generator=generator, output_type="latent").images[0] image = refiner(positive_prompt, negative_prompt=negative_prompt, image=image[None, :]).images[0] image_list.append((image,f"Seed {seed}")) return image_list with gr.Blocks(theme=gr.themes.Soft(),css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Group(): with gr.Row(): with gr.Column(): input_prompt = gr.Textbox(label="Input prompt", lines=3, max_lines=5) negative_prompt = gr.Textbox(label="Negative prompt",value="") run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", show_label=False, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", height="auto") with gr.Accordion("Advanced options", open=False): with gr.Row(): style_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Image Style", ) with gr.Row(): height = gr.Slider(minimum=512, maximum=1536, value=1024, label="Height", step=64) width = gr.Slider(minimum=512, maximum=1536, value=1024, label="Witdh", step=64) with gr.Row(): steps = gr.Slider(minimum=1, maximum=50, value=30, label="Number of diffusion steps", step=1) scale = gr.Number(minimum=1, maximum=12, value=7.5, label="Number of scale") with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) random_seed = gr.Checkbox(label="Randomize seed", value=True) img_num = gr.Slider(minimum=1, maximum=4, value=4, label="Number of images", step=1) gr.Examples( examples=examples, inputs=input_prompt, outputs=result, fn=generate_image, cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[ input_prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate_image, inputs = [input_prompt, negative_prompt, style_selection, steps, height, width, scale, img_num, seed, random_seed], outputs= result, api_name="run") if __name__ == "__main__": demo.queue(max_size=20).launch(show_api=False, debug=False)