import os from dotenv import load_dotenv import openai from test_get_all_repo import get_repos from bs4 import BeautifulSoup import markdown import re import time # Load environment variables load_dotenv() TOKEN = os.getenv('TOKEN') # Set up the OpenAI API client openai_api_key = os.environ["OPENAI_API_KEY"] # 过滤文本中链接防止大语言模型风控 def remove_urls(text): # 正则表达式模式,用于匹配URL url_pattern = re.compile(r'https?://[^\s]*') # 替换所有匹配的URL为空字符串 text = re.sub(url_pattern, '', text) # 正则表达式模式,用于匹配特定的文本 specific_text_pattern = re.compile(r'扫描下方二维码关注公众号|提取码|关注|科学上网|回复关键词|侵权|版权|致谢|引用|LICENSE' r'|组队打卡|任务打卡|组队学习的那些事|学习周期|开源内容|打卡|组队学习|链接') # 替换所有匹配的特定文本为空字符串 text = re.sub(specific_text_pattern, '', text) return text # 抽取md中的文本 def extract_text_from_md(md_content): # Convert Markdown to HTML html = markdown.markdown(md_content) # Use BeautifulSoup to extract text soup = BeautifulSoup(html, 'html.parser') return remove_urls(soup.get_text()) def generate_llm_summary(repo_name, readme_content,model): prompt = f"1:这个仓库名是 {repo_name}. 此仓库的readme全部内容是: {readme_content}\ 2:请用约200以内的中文概括这个仓库readme的内容,返回的概括格式要求:这个仓库名是...,这仓库内容主要是..." openai.api_key = openai_api_key # 具体调用 messages = [{"role": "system", "content": "你是一个人工智能助手"}, {"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, ) return response.choices[0].message["content"] def main(org_name,export_dir,summary_dir,model): repos = get_repos(org_name, TOKEN, export_dir) # Create a directory to save summaries os.makedirs(summary_dir, exist_ok=True) for id, repo in enumerate(repos): repo_name = repo['name'] readme_path = os.path.join(export_dir, repo_name, 'README.md') print(repo_name) if os.path.exists(readme_path): with open(readme_path, 'r', encoding='utf-8') as file: readme_content = file.read() # Extract text from the README readme_text = extract_text_from_md(readme_content) # Generate a summary for the README # 访问受限,每min一次 time.sleep(60) print('第' + str(id) + '条' + 'summary开始') try: summary = generate_llm_summary(repo_name, readme_text,model) print(summary) # Write summary to a Markdown file in the summary directory summary_file_path = os.path.join(summary_dir, f"{repo_name}_summary.md") with open(summary_file_path, 'w', encoding='utf-8') as summary_file: summary_file.write(f"# {repo_name} Summary\n\n") summary_file.write(summary) except openai.OpenAIError as e: summary_file_path = os.path.join(summary_dir, f"{repo_name}_summary风控.md") with open(summary_file_path, 'w', encoding='utf-8') as summary_file: summary_file.write(f"# {repo_name} Summary风控\n\n") summary_file.write("README内容风控。\n") print(f"Error generating summary for {repo_name}: {e}") # print(readme_text) else: print(f"文件不存在: {readme_path}") # If README doesn't exist, create an empty Markdown file summary_file_path = os.path.join(summary_dir, f"{repo_name}_summary不存在.md") with open(summary_file_path, 'w', encoding='utf-8') as summary_file: summary_file.write(f"# {repo_name} Summary不存在\n\n") summary_file.write("README文件不存在。\n") if __name__ == '__main__': # 配置组织名称 org_name = 'datawhalechina' # 配置 export_dir export_dir = "database/readme_db" # 请替换为实际readme的目录路径 summary_dir="knowledge_db/readme_summary"# 请替换为实际readme的概括的目录路径 model="gpt-3.5-turbo" #deepseek-chat,gpt-3.5-turbo,moonshot-v1-8k main(org_name,export_dir,summary_dir,model)