pcuenq's picture
pcuenq HF staff
Remove cached and exported models after conversion.
7216234
raw
history blame
17.1 kB
import gradio as gr
import json
import shutil
import subprocess
import urllib.parse
from pathlib import Path
from huggingface_hub import hf_hub_download, HfApi, scan_cache_dir
from coremltools import ComputeUnit
from coremltools.models.utils import _is_macos, _macos_version
from transformers.onnx.utils import get_preprocessor
from exporters.coreml import export
from exporters.coreml.features import FeaturesManager
from exporters.coreml.validate import validate_model_outputs
compute_units_mapping = {
"All": ComputeUnit.ALL,
"CPU": ComputeUnit.CPU_ONLY,
"CPU + GPU": ComputeUnit.CPU_AND_GPU,
"CPU + NE": ComputeUnit.CPU_AND_NE,
}
compute_units_labels = list(compute_units_mapping.keys())
framework_mapping = {
"PyTorch": "pt",
"TensorFlow": "tf",
}
framework_labels = list(framework_mapping.keys())
precision_mapping = {
"Float32": "float32",
"Float16 quantization": "float16",
}
precision_labels = list(precision_mapping.keys())
tolerance_mapping = {
"Model default": None,
"1e-2": 1e-2,
"1e-3": 1e-3,
"1e-4": 1e-4,
}
tolerance_labels = list(tolerance_mapping.keys())
push_mapping = {
"Submit a PR to the original repo": "pr",
"Create a new repo": "new",
}
push_labels = list(push_mapping.keys())
tasks_mapping = {
"default": "Feature Extraction",
"causal-lm": "Text Generation",
"ctc": "CTC (Connectionist Temporal Classification)",
"image-classification": "Image Classification",
"image-segmentation": "Image Segmentation",
"masked-im": "Image Fill-Mask",
"masked-lm": "Fill-Mask",
"multiple-choice": "Multiple Choice",
"next-sentence-prediction": "Next Sentence Prediction",
"object-detection": "Object Detection",
"question-answering": "Question Answering",
"semantic-segmentation": "Semantic Segmentation",
"seq2seq-lm": "Text to Text Generation",
"sequence-classification": "Text Classification",
"speech-seq2seq": "Audio to Audio",
"token-classification": "Token Classification",
}
reverse_tasks_mapping = {v: k for k, v in tasks_mapping.items()}
tasks_labels = list(tasks_mapping.keys())
# Map pipeline_tag to internal exporters features/tasks
tags_to_tasks_mapping = {
"feature-extraction": "default",
"text-generation": "causal-lm",
"image-classification": "image-classification",
"image-segmentation": "image-segmentation",
"fill-mask": "masked-lm",
"object-detection": "object-detection",
"question-answering": "question-answering",
"text2text-generation": "seq2seq-lm",
"text-classification": "sequence-classification",
"token-classification": "token-classification",
}
def error_str(error, title="Error", model=None, task=None, framework=None, compute_units=None, precision=None, tolerance=None, destination=None, open_discussion=True):
if not error: return ""
discussion_text = ""
if open_discussion:
issue_title = urllib.parse.quote(f"Error converting {model}")
issue_description = urllib.parse.quote(f"""Conversion Settings:
Model: {model}
Task: {task}
Framework: {framework}
Compute Units: {compute_units}
Precision: {precision}
Tolerance: {tolerance}
Push to: {destination}
Error: {error}
""")
issue_url = f"https://huggingface.co/spaces/pcuenq/transformers-to-coreml/discussions/new?title={issue_title}&description={issue_description}"
discussion_text = f"You can open a discussion on the [Hugging Face Hub]({issue_url}) to report this issue."
return f"""
#### {title}
{error}
{discussion_text}
"""
def url_to_model_id(model_id_str):
if not model_id_str.startswith("https://huggingface.co/"): return model_id_str
return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1]
def get_pr_url(api, repo_id, title):
try:
discussions = api.get_repo_discussions(repo_id=repo_id)
except Exception:
return None
for discussion in discussions:
if (
discussion.status == "open"
and discussion.is_pull_request
and discussion.title == title
):
return f"https://huggingface.co/{repo_id}/discussions/{discussion.num}"
def retrieve_model_info(model_id):
api = HfApi()
model_info = api.model_info(model_id)
tags = model_info.tags
frameworks = [tag for tag in tags if tag in ["pytorch", "tf"]]
return {
"pipeline_tag": model_info.pipeline_tag,
"frameworks": sorted(["PyTorch" if f == "pytorch" else "TensorFlow" for f in frameworks]),
}
def supported_frameworks(model_info):
"""
Return a list of supported frameworks (`PyTorch` or `TensorFlow`) for a given model_id.
Only PyTorch and Tensorflow are supported.
"""
api = HfApi()
model_info = api.model_info(model_id)
tags = model_info.tags
frameworks = [tag for tag in tags if tag in ["pytorch", "tf"]]
return sorted(["PyTorch" if f == "pytorch" else "TensorFlow" for f in frameworks])
def on_model_change(model):
model = url_to_model_id(model)
tasks = None
error = None
frameworks = []
selected_framework = None
selected_task = None
try:
config_file = hf_hub_download(model, filename="config.json")
if config_file is None:
raise Exception(f"Model {model} not found")
with open(config_file, "r") as f:
config_json = f.read()
config = json.loads(config_json)
model_type = config["model_type"]
# Ignore `-with-past` for now
features = FeaturesManager.get_supported_features_for_model_type(model_type)
tasks = list(features.keys())
tasks = [task for task in tasks if "-with-past" not in task]
model_info = retrieve_model_info(model)
frameworks = model_info["frameworks"]
selected_framework = frameworks[0] if len(frameworks) > 0 else None
pipeline_tag = model_info["pipeline_tag"]
# print(pipeline_tag)
# Select the task corresponding to the pipeline tag
if tasks:
if pipeline_tag in tags_to_tasks_mapping:
selected_task = tags_to_tasks_mapping[pipeline_tag]
else:
selected_task = tasks[0]
# Convert to UI labels
tasks = [tasks_mapping[task] for task in tasks]
selected_task = tasks_mapping[selected_task]
except Exception as e:
error = e
model_type = None
return (
gr.update(visible=bool(model_type)), # Settings column
gr.update(choices=tasks, value=selected_task), # Tasks
gr.update(visible=len(frameworks)>1, choices=frameworks, value=selected_framework), # Frameworks
gr.update(value=error_str(error, model=model)), # Error
)
def convert_model(preprocessor, model, model_coreml_config,
compute_units, precision, tolerance, output,
use_past=False, seq2seq=None,
progress=None, progress_start=0.1, progress_end=0.8):
coreml_config = model_coreml_config(model.config, use_past=use_past, seq2seq=seq2seq)
model_label = "model" if seq2seq is None else seq2seq
progress(progress_start, desc=f"Converting {model_label}")
mlmodel = export(
preprocessor,
model,
coreml_config,
quantize=precision,
compute_units=compute_units,
)
filename = output
if seq2seq == "encoder":
filename = filename.parent / ("encoder_" + filename.name)
elif seq2seq == "decoder":
filename = filename.parent / ("decoder_" + filename.name)
filename = filename.as_posix()
mlmodel.save(filename)
if _is_macos() and _macos_version() >= (12, 0):
progress(progress_end * 0.8, desc=f"Validating {model_label}")
if tolerance is None:
tolerance = coreml_config.atol_for_validation
validate_model_outputs(coreml_config, preprocessor, model, mlmodel, tolerance)
progress(progress_end, desc=f"Done converting {model_label}")
def push_to_hub(destination, directory, task, precision, token=None):
api = HfApi(token=token)
api.create_repo(destination, token=token, exist_ok=True)
commit_message="Add Core ML conversion"
api.upload_folder(
folder_path=directory,
repo_id=destination,
token=token,
create_pr=True,
commit_message=commit_message,
commit_description=f"Core ML conversion, task={task}, precision={precision}",
)
subprocess.run(["rm", "-rf", directory])
return get_pr_url(HfApi(token=token), destination, commit_message)
def cleanup(model_id, exported):
if exported:
shutil.rmtree(exported)
# We remove the model from the huggingface cache, so it will have to be downloaded again
# if the user wants to convert it for a different task or precision.
# Alternatively, we could remove models older than 1 day or so.
cache_info = scan_cache_dir()
try:
repo = next(repo for repo in cache_info.repos if repo.repo_id==model_id)
except StopIteration:
# The model was not in the cache!
return
if repo is not None:
for revision in repo.revisions:
delete_strategy = cache_info.delete_revisions(revision.commit_hash)
delete_strategy.execute()
def convert(model_id, task,
compute_units, precision, tolerance, framework,
push_destination, destination_model, token,
progress=gr.Progress()):
model_id = url_to_model_id(model_id)
task = reverse_tasks_mapping[task]
compute_units = compute_units_mapping[compute_units]
precision = precision_mapping[precision]
tolerance = tolerance_mapping[tolerance]
framework = framework_mapping[framework]
push_destination = push_mapping[push_destination]
if push_destination == "pr":
destination_model = model_id
if token is None or token == "":
return error_str("Please provide a token to push to the Hub.", open_discussion=False)
# TODO: support legacy format
exported_base = Path("exported")/model_id
output = exported_base/"coreml"/task
output.mkdir(parents=True, exist_ok=True)
output = output/f"{precision}_model.mlpackage"
try:
progress(0, desc="Downloading model")
preprocessor = get_preprocessor(model_id)
model = FeaturesManager.get_model_from_feature(task, model_id, framework=framework)
_, model_coreml_config = FeaturesManager.check_supported_model_or_raise(model, feature=task)
if task in ["seq2seq-lm", "speech-seq2seq"]:
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
seq2seq="encoder",
progress=progress,
progress_start=0.1,
progress_end=0.4,
)
progress(0.4, desc="Converting decoder")
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
seq2seq="decoder",
progress=progress,
progress_start=0.4,
progress_end=0.7,
)
else:
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
progress=progress,
progress_end=0.7,
)
progress(0.7, "Uploading model to Hub")
pr_url = push_to_hub(destination_model, exported_base, task, precision, token=token)
progress(1, "Done")
cleanup(model_id, exported_base)
did_validate = _is_macos() and _macos_version() >= (12, 0)
result = f"""### Successfully converted!
We opened a PR to add the Core ML weights to the model repo. Please, view and merge the PR [here]({pr_url}).
{f"**Note**: model could not be automatically validated as this Space is not running on macOS." if not did_validate else ""}
"""
return result
except Exception as e:
return error_str(e, model=model_id, task=task, framework=framework, compute_units=compute_units, precision=precision, tolerance=tolerance)
DESCRIPTION = """
## Convert a `transformers` model to Core ML
With this Space you can try to convert a transformers model to Core ML. It uses the 🤗 Hugging Face [Exporters repo](https://github.com/huggingface/exporters) under the hood.
Note that not all models are supported. If you get an error on a model you'd like to convert, please open an issue in the discussions tab of this Space. You'll get a link to do it when an error occurs.
"""
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## 1. Load model info")
input_model = gr.Textbox(
max_lines=1,
label="Model name or URL, such as apple/mobilevit-small",
placeholder="pcuenq/distilbert-base-uncased",
value="pcuenq/distilbert-base-uncased",
)
btn_get_tasks = gr.Button("Load")
with gr.Column(scale=3):
with gr.Column(visible=False) as group_settings:
gr.Markdown("## 2. Select Task")
radio_tasks = gr.Radio(label="Choose the task for the converted model.")
gr.Markdown("The `default` task is suitable for feature extraction.")
radio_framework = gr.Radio(
visible=False,
label="Framework",
choices=framework_labels,
value=framework_labels[0],
)
radio_compute = gr.Radio(
label="Compute Units",
choices=compute_units_labels,
value=compute_units_labels[0],
)
radio_precision = gr.Radio(
label="Precision",
choices=precision_labels,
value=precision_labels[0],
)
radio_tolerance = gr.Radio(
label="Absolute Tolerance for Validation",
choices=tolerance_labels,
value=tolerance_labels[0],
)
with gr.Group():
text_token = gr.Textbox(label="Hugging Face Token", placeholder="hf_xxxx", value="")
radio_push = gr.Radio(
label="Destination Model",
choices=push_labels,
value=push_labels[0],
)
# TODO: public/private
text_destination = gr.Textbox(visible=False, label="Destination model name", value="")
btn_convert = gr.Button("Convert & Push")
gr.Markdown("Conversion will take a few minutes.")
error_output = gr.Markdown(label="Output")
# # Clear output
# btn_get_tasks.click(lambda _: gr.update(value=''), None, error_output)
# input_model.submit(lambda _: gr.update(value=''), None, error_output)
# btn_convert.click(lambda _: gr.update(value=''), None, error_output)
input_model.submit(
fn=on_model_change,
inputs=input_model,
outputs=[group_settings, radio_tasks, radio_framework, error_output],
queue=False,
scroll_to_output=True
)
btn_get_tasks.click(
fn=on_model_change,
inputs=input_model,
outputs=[group_settings, radio_tasks, radio_framework, error_output],
queue=False,
scroll_to_output=True
)
btn_convert.click(
fn=convert,
inputs=[input_model, radio_tasks, radio_compute, radio_precision, radio_tolerance, radio_framework, radio_push, text_destination, text_token],
outputs=error_output,
scroll_to_output=True,
# api_name="convert",
)
radio_push.change(
lambda x: gr.update(visible=x == "Create a new repo"),
inputs=radio_push,
outputs=text_destination,
queue=False,
scroll_to_output=False
)
gr.HTML("""
<div style="border-top: 0.5px solid #303030;">
<br>
<p style="color:gray;font-size:smaller;font-style:italic">Adapted from https://huggingface.co/spaces/diffusers/sd-to-diffusers/tree/main</p><br>
</div>
""")
demo.queue(concurrency_count=1, max_size=10)
demo.launch(debug=True, share=False)