import string import gradio as gr import requests import torch from transformers import T5Tokenizer from model import T5ForMultimodalGeneration from PIL import Image import timm from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform rationale_model_dir = "cooelf/MM-CoT-UnifiedQA-Base-Rationale-Joint" vit_model = timm.create_model("vit_base_patch16_384", pretrained=True, num_classes=0) vit_model.eval() config = resolve_data_config({}, model=vit_model) transform = create_transform(**config) tokenizer = T5Tokenizer.from_pretrained(rationale_model_dir) r_model = T5ForMultimodalGeneration.from_pretrained(rationale_model_dir, patch_size=(577, 768)) def inference_chat(input_image,input_text): with torch.no_grad(): img = Image.open(input_image).convert("RGB") input = transform(img).unsqueeze(0) out = vit_model.forward_features(input) image_features = out.detach() input_ids = tokenizer(input_text, return_tensors='pt', padding=True).input_ids source = tokenizer.batch_encode_plus( [input_text], max_length=512, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt", ) source_ids = source["input_ids"] source_mask = source["attention_mask"] rationale = r_model.generate( input_ids=source_ids, attention_mask=source_mask, image_ids=image_features, max_length=512, num_beams=1, do_sample=False ) gpt3_out = tokenizer.batch_decode(rationale, skip_special_tokens=True)[0] gpt3_out1 = gpt3_out return gpt3_out, gpt3_out,gpt3_out1 title = """# VQA with VLE and LLM""" description = """**VLE** (Visual-Language Encoder) is an image-text multimodal understanding model built on the pre-trained text and image encoders. See https://github.com/iflytek/VLE for more details. We demonstrate visual question answering systems built with VLE and LLM.""" description1 = """**VQA**: The image and the question are fed to a VQA model (VLEForVQA) and the model predicts the answer. **VQA+LLM**: We feed the caption, question, and answers predicted by the VQA model to the LLM and ask the LLM to generate the final answer. The outptus from VQA+LLM may vary due to the decoding strategy of the LLM.""" with gr.Blocks( css=""" .message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px} #component-21 > div.wrap.svelte-w6rprc {height: 600px;} """ ) as iface: state = gr.State([]) #caption_output = None gr.Markdown(title) gr.Markdown(description) #gr.Markdown(article) with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(type="pil",label="VQA Image Input") with gr.Row(): with gr.Column(scale=1): chat_input = gr.Textbox(lines=1, label="VQA Question Input") with gr.Row(): clear_button = gr.Button(value="Clear", interactive=True,width=30) submit_button = gr.Button( value="Submit", interactive=True, variant="primary" ) ''' cap_submit_button = gr.Button( value="Submit_CAP", interactive=True, variant="primary" ) gpt3_submit_button = gr.Button( value="Submit_GPT3", interactive=True, variant="primary" ) ''' with gr.Column(): gr.Markdown(description1) caption_output = gr.Textbox(lines=0, label="VQA") caption_output_v1 = gr.Textbox(lines=0, label="VQA + LLM (short answer)") gpt3_output_v1 = gr.Textbox(lines=0, label="VQA+LLM (long answer)") chat_input.submit( inference_chat, [ image_input, chat_input, ], [ caption_output,gpt3_output_v1,caption_output_v1], ) clear_button.click( lambda: ("", [],"","",""), [], [chat_input, state,caption_output,gpt3_output_v1,caption_output_v1], queue=False, ) submit_button.click( inference_chat, [ image_input, chat_input, ], [caption_output,gpt3_output_v1,caption_output_v1], ) examples=[['api/61.png',"Question: Think about the magnetic force between the magnets in each pair. Which of the following statements is true?\nContext: The images below show two pairs of magnets. The magnets in different pairs do not affect each other. All the magnets shown are made of the same material, but some of them are different sizes and shapes.\nOptions: (A) The magnitude of the magnetic force is the same in both pairs. (B) The magnitude of the magnetic force is smaller in Pair 1. (C) The magnitude of the magnetic force is smaller in Pair 2.\nSolution:","2","2","2"], ] examples = gr.Examples( examples=examples,inputs=[image_input, chat_input,caption_output,caption_output_v1,gpt3_output_v1], ) iface.queue(concurrency_count=1, api_open=False, max_size=10) iface.launch(enable_queue=True)