import numpy as np import cv2 # This function is modified from the following code snippet: # https://github.com/StanislasBertrand/RetinaFace-tf2/blob/5f68ce8130889384cb8aca937a270cea4ef2d020/retinaface.py#L49-L74 def resize_image(img, scales, allow_upscaling): img_h, img_w = img.shape[0:2] target_size = scales[0] max_size = scales[1] if img_w > img_h: im_size_min, im_size_max = img_h, img_w else: im_size_min, im_size_max = img_w, img_h im_scale = target_size / float(im_size_min) if not allow_upscaling: im_scale = min(1.0, im_scale) if np.round(im_scale * im_size_max) > max_size: im_scale = max_size / float(im_size_max) if im_scale != 1.0: img = cv2.resize( img, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR ) return img, im_scale # This function is modified from the following code snippet: # https://github.com/StanislasBertrand/RetinaFace-tf2/blob/5f68ce8130889384cb8aca937a270cea4ef2d020/retinaface.py#L76-L96 def preprocess_image(img, allow_upscaling): pixel_means = np.array([0.0, 0.0, 0.0], dtype=np.float32) pixel_stds = np.array([1.0, 1.0, 1.0], dtype=np.float32) pixel_scale = float(1.0) scales = [1024, 1980] img, im_scale = resize_image(img, scales, allow_upscaling) img = img.astype(np.float32) im_tensor = np.zeros((1, img.shape[0], img.shape[1], img.shape[2]), dtype=np.float32) # Make image scaling + BGR2RGB conversion + transpose (N,H,W,C) to (N,C,H,W) for i in range(3): im_tensor[0, :, :, i] = (img[:, :, 2 - i] / pixel_scale - pixel_means[2 - i]) / pixel_stds[2 - i] return im_tensor, img.shape[0:2], im_scale