Spaces:
Runtime error
Runtime error
File size: 6,734 Bytes
66ca1ff 575536c 66ca1ff 8e9300e 66ca1ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
#---------------------------
import numpy as np
import tensorflow as tf
import cv2
import retinaface_model
import preprocess
import postprocess
#---------------------------
import tensorflow as tf
tf_version = int(tf.__version__.split(".")[0])
if tf_version == 2:
import logging
tf.get_logger().setLevel(logging.ERROR)
#---------------------------
def build_model():
global model #singleton design pattern
if not "model" in globals():
model = tf.function(
retinaface_model.build_model(),
input_signature=(tf.TensorSpec(shape=[None, None, None, 3], dtype=np.float32),)
)
return model
def get_image(img_path):
if type(img_path) == str: # Load from file path
if not os.path.isfile(img_path):
raise ValueError("Input image file path (", img_path, ") does not exist.")
img = cv2.imread(img_path)
elif isinstance(img_path, np.ndarray): # Use given NumPy array
img = img_path.copy()
else:
raise ValueError("Invalid image input. Only file paths or a NumPy array accepted.")
# Validate image shape
if len(img.shape) != 3 or np.prod(img.shape) == 0:
raise ValueError("Input image needs to have 3 channels at must not be empty.")
return img
def detect_faces(img_path, threshold=0.9, model = None, allow_upscaling = True):
"""
TODO: add function doc here
"""
img = get_image(img_path)
#---------------------------
if model is None:
model = build_model()
#---------------------------
nms_threshold = 0.4; decay4=0.5
_feat_stride_fpn = [32, 16, 8]
_anchors_fpn = {
'stride32': np.array([[-248., -248., 263., 263.], [-120., -120., 135., 135.]], dtype=np.float32),
'stride16': np.array([[-56., -56., 71., 71.], [-24., -24., 39., 39.]], dtype=np.float32),
'stride8': np.array([[-8., -8., 23., 23.], [ 0., 0., 15., 15.]], dtype=np.float32)
}
_num_anchors = {'stride32': 2, 'stride16': 2, 'stride8': 2}
#---------------------------
proposals_list = []
scores_list = []
landmarks_list = []
im_tensor, im_info, im_scale = preprocess.preprocess_image(img, allow_upscaling)
net_out = model(im_tensor)
net_out = [elt.numpy() for elt in net_out]
sym_idx = 0
for _idx, s in enumerate(_feat_stride_fpn):
_key = 'stride%s'%s
scores = net_out[sym_idx]
scores = scores[:, :, :, _num_anchors['stride%s'%s]:]
bbox_deltas = net_out[sym_idx + 1]
height, width = bbox_deltas.shape[1], bbox_deltas.shape[2]
A = _num_anchors['stride%s'%s]
K = height * width
anchors_fpn = _anchors_fpn['stride%s'%s]
anchors = postprocess.anchors_plane(height, width, s, anchors_fpn)
anchors = anchors.reshape((K * A, 4))
scores = scores.reshape((-1, 1))
bbox_stds = [1.0, 1.0, 1.0, 1.0]
bbox_deltas = bbox_deltas
bbox_pred_len = bbox_deltas.shape[3]//A
bbox_deltas = bbox_deltas.reshape((-1, bbox_pred_len))
bbox_deltas[:, 0::4] = bbox_deltas[:,0::4] * bbox_stds[0]
bbox_deltas[:, 1::4] = bbox_deltas[:,1::4] * bbox_stds[1]
bbox_deltas[:, 2::4] = bbox_deltas[:,2::4] * bbox_stds[2]
bbox_deltas[:, 3::4] = bbox_deltas[:,3::4] * bbox_stds[3]
proposals = postprocess.bbox_pred(anchors, bbox_deltas)
proposals = postprocess.clip_boxes(proposals, im_info[:2])
if s==4 and decay4<1.0:
scores *= decay4
scores_ravel = scores.ravel()
order = np.where(scores_ravel>=threshold)[0]
proposals = proposals[order, :]
scores = scores[order]
proposals[:, 0:4] /= im_scale
proposals_list.append(proposals)
scores_list.append(scores)
landmark_deltas = net_out[sym_idx + 2]
landmark_pred_len = landmark_deltas.shape[3]//A
landmark_deltas = landmark_deltas.reshape((-1, 5, landmark_pred_len//5))
landmarks = postprocess.landmark_pred(anchors, landmark_deltas)
landmarks = landmarks[order, :]
landmarks[:, :, 0:2] /= im_scale
landmarks_list.append(landmarks)
sym_idx += 3
proposals = np.vstack(proposals_list)
if proposals.shape[0]==0:
landmarks = np.zeros( (0,5,2) )
return np.zeros( (0,5) ), landmarks
scores = np.vstack(scores_list)
scores_ravel = scores.ravel()
order = scores_ravel.argsort()[::-1]
proposals = proposals[order, :]
scores = scores[order]
landmarks = np.vstack(landmarks_list)
landmarks = landmarks[order].astype(np.float32, copy=False)
pre_det = np.hstack((proposals[:,0:4], scores)).astype(np.float32, copy=False)
#nms = cpu_nms_wrapper(nms_threshold)
#keep = nms(pre_det)
keep = postprocess.cpu_nms(pre_det, nms_threshold)
det = np.hstack( (pre_det, proposals[:,4:]) )
det = det[keep, :]
landmarks = landmarks[keep]
resp = {}
for idx, face in enumerate(det):
label = 'face_'+str(idx+1)
resp[label] = {}
resp[label]["score"] = face[4]
resp[label]["facial_area"] = list(face[0:4].astype(int))
resp[label]["landmarks"] = {}
resp[label]["landmarks"]["right_eye"] = list(landmarks[idx][0])
resp[label]["landmarks"]["left_eye"] = list(landmarks[idx][1])
resp[label]["landmarks"]["nose"] = list(landmarks[idx][2])
resp[label]["landmarks"]["mouth_right"] = list(landmarks[idx][3])
resp[label]["landmarks"]["mouth_left"] = list(landmarks[idx][4])
return resp
def extract_faces(img_path, threshold=0.9, model = None, align = True, allow_upscaling = True):
resp = []
#---------------------------
img = get_image(img_path)
#---------------------------
obj = detect_faces(img_path = img, threshold = threshold, model = model, allow_upscaling = allow_upscaling)
if type(obj) == dict:
for key in obj:
identity = obj[key]
facial_area = identity["facial_area"]
facial_img = img[facial_area[1]: facial_area[3], facial_area[0]: facial_area[2]]
if align == True:
landmarks = identity["landmarks"]
left_eye = landmarks["left_eye"]
right_eye = landmarks["right_eye"]
nose = landmarks["nose"]
mouth_right = landmarks["mouth_right"]
mouth_left = landmarks["mouth_left"]
facial_img = postprocess.alignment_procedure(facial_img, right_eye, left_eye, nose)
resp.append(facial_img[:, :, ::-1])
#elif type(obj) == tuple:
return resp
|