Spaces:
Running
Running
import gradio as gr | |
import openai | |
import json | |
import os | |
import pandas as pd | |
# OpenAI API μ€μ (νκ²½ λ³μμμ μ½μ΄μ΄) | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
# gptμ΄μ©ν΄μ μΆλ‘ ν¨μ λ§λ€κΈ° | |
def generate_annotated_text(text): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo-16k", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "μ±μ·¨κΈ°μ€ κΈ°λ° νμμ νΉμ± λ° νλ νκ° μμ±\nμ±μ·¨κΈ°μ€μ μ λ ₯νμλ©΄, ν΄λΉ μ±μ·¨κΈ°μ€μ κΈ°λ°ν νμμ νΉμ± λ° νλμ λν νκ°λ₯Ό annotated_text νμμΌλ‘ μ 곡ν©λλ€. μ±μ·¨κΈ°μ€μ 보며 νμμ νΉμ νλ, μ±μ·¨ μμ€, κ΅μ¬μ μ΄ν, κ·Έλ¦¬κ³ νμμ μλμ κ³ λ €νμ¬ μ²΄κ³μ μΌλ‘ ꡬμ±λ μΆλ ₯μ μ 곡ν©λλ€. μ£Όμ΄λ λ°λμ μλ΅ν©λλ€. \n\nμμ :\nμ λ ₯: ```μ±μ·¨κΈ°μ€: [6κ΅01-07]μλκ° μ²ν μν©μ μ΄ν΄νκ³ κ³΅κ°νλ©° λ£λ νλλ₯Ό μ§λλ€, [6κ΅01-02] μ견μ μ μνκ³ ν¨κ» μ‘°μ νλ©° ν μνλ€.```\nμΆλ ₯: ```annotated_text(\n (\"νμ μμ μ μκ°μ μΌλͺ©μμ°νκ² μ 리νλ μ΅κ΄μ΄ μμ.\", \"μλ\", \"rgba(255, 0, 0, 0.3)\"),\n (\"μ¬ν νμμ κ΄ν μ£Όμ₯νλ κΈμ°κΈ°λ₯Ό μν¨.\", \"μ±μ·¨μμ€\", \"rgba(0, 0, 255, 0.3)\"),\n (\"μΉκ΅¬μ κ³ λ―Όμ ν΄κ²°ν΄μ£Όλ μν κ·Ήμμ μλλ°©μ λ°°λ €νμ¬ ν΄κ²° κ°λ₯ν λ°©μμ μ μν¨.\", \"μν\", \"rgba(0, 128, 0, 0.3)\"),\n (\"μλκ° μ²ν μν©μ μ΄ν΄νκ³ κ³΅κ°νλ νλλ₯Ό κ°μ§κ³ μΉκ΅¬λ€κ³Ό μλ§ν κ΄κ³λ₯Ό λ§Ίκ³ κ°λ±μ μ‘°μ ν¨.\", \"κ΅μ¬μ΄ν\", \"rgba(128, 128, 128, 0.3)\"),\n (\"μ€κ° λμ΄ μκ°μ μ΄λμ₯μ μ¬μ©νλ λ°©λ² μ νκΈ°λ₯Ό μ£Όμ λ‘ ν ν μμμ μλ§μ κ·Όκ±°μ λ·λ°μΉ¨ν μ μλ μλ£λ₯Ό ν λλ‘ μμ μ μ견μ νλΉνκ² μ μνλ©΄μ λ€λ₯Έ μ¬λμ μ견μ λ₯λμ μΌλ‘ μμ©νκ³ ν¨κ³Όμ μΌλ‘ μ견μ μ‘°μ νλ λ₯λ ₯μ 보μ.\", \"μν\", \"rgba(0, 128, 0, 0.3)\"),\n (\"μλμ μ견μ μ‘΄μ€νκ³ νλ ₯νλ νλλ₯Ό 보μ.\", \"μλ\", \"rgba(255, 0, 0, 0.3)\")\n)\n```" | |
}, | |
{ | |
"role": "user", | |
"content": text | |
} | |
], | |
temperature=1, | |
max_tokens=10000, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
return response['choices'][0]['message']['content'] | |
# μ μ¬ν λ¬Έμ₯ μμ± ν¨μ | |
def generate_similar_sentences(base_sentence): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo-16k", | |
messages=[ | |
{ | |
"role": "system", | |
"content": f"λ€μμ '{base_sentence}'μ μ μ¬ν νμμ νΉμ± λ° νλμ λν νκ° μμ λ¬Έν 10κ°λ₯Ό λ§λ€μ΄λΌ. μ£Όμ΄λ μλ΅ν΄λΌ. λ¬Έμ₯μ λμ '~μ,~ν¨,~μ'μΌλ‘ λλλλ‘ ν΄μ€" | |
}, | |
{ | |
"role": "user", | |
"content": base_sentence | |
} | |
], | |
temperature=0.7, | |
max_tokens=10000, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
generated_sentences = response.choices[0].message['content'].split('\n') | |
return [sentence.strip() for sentence in generated_sentences if sentence.strip()] | |
# μ±μ·¨κΈ°μ€ λ°μ΄ν° κ°μ Έμ€κΈ° | |
import achievement_standards as data | |
achievement_standards = data.achievement_standards | |
def get_subjects(grade_group): | |
return list(achievement_standards[grade_group].keys()) | |
def get_standards(grade_group, subject): | |
return achievement_standards[grade_group][subject] | |
def generate_and_save_evaluation(grade_group, subject, standard): | |
result = generate_annotated_text(standard) | |
result_lines = result.split('\n') | |
sentences = [line[start_idx + 2:line.find('",', start_idx)].strip() for line in result_lines if (start_idx := line.find('("')) != -1] | |
df = pd.DataFrame(sentences, columns=["Evaluation"]) | |
file_path = "/mnt/data/evaluations.csv" | |
df.to_csv(file_path, index=False) | |
return result, file_path | |
# Gradio μΈν°νμ΄μ€ μ μ | |
with gr.Blocks() as demo: | |
gr.Markdown("### μ±μ·¨κΈ°μ€ κΈ°λ° νμμ νΉμ± λ° νλ νκ° μμ±") | |
grade_group = gr.Dropdown(label="νλ κ΅°μ μ ννμΈμ:", choices=list(achievement_standards.keys())) | |
subject = gr.Dropdown(label="κ³Όλͺ©μ μ ννμΈμ:") | |
standard = gr.Dropdown(label="μ±μ·¨κΈ°μ€μ μ ννμΈμ:") | |
grade_group.change(fn=get_subjects, inputs=grade_group, outputs=subject) | |
subject.change(fn=get_standards, inputs=[grade_group, subject], outputs=standard) | |
with gr.Row(): | |
generate_button = gr.Button("νκ° μμ±") | |
result_output = gr.HTML() | |
similar_sentence_button = gr.Button("μ μ¬ν 문ꡬ μμ±") | |
similar_sentences_output = gr.HTML() | |
save_button = gr.Button("CSVλ‘ μ μ₯") | |
download_link = gr.File() | |
def update_similar_sentences(selected_sentence): | |
similar_sentences = generate_similar_sentences(selected_sentence) | |
return '<br>'.join(similar_sentences) | |
def save_evaluations_to_csv(evaluations): | |
df = pd.DataFrame(evaluations, columns=["Evaluation"]) | |
file_path = "/mnt/data/evaluations.csv" | |
df.to_csv(file_path, index=False) | |
return file_path | |
selected_sentence = gr.Textbox(visible=False) | |
generate_button.click(fn=generate_and_save_evaluation, inputs=[grade_group, subject, standard], outputs=[result_output, download_link]) | |
similar_sentence_button.click(fn=update_similar_sentences, inputs=selected_sentence, outputs=similar_sentences_output) | |
save_button.click(fn=save_evaluations_to_csv, inputs=result_output, outputs=download_link) | |
demo.launch() | |