import gradio as gr from fastai.vision.all import * learn = load_learner("export.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) _, _, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface( fn=predict, inputs=gr.components.Image(shape=(400, 400)), outputs=gr.components.Label(num_top_classes=2), title="Does my sighthound have a corn?", description="Given a picture of a paw, does it have a corn?", examples=[ "corn_01.jpg", "corn_02.jpg", "corn_03.jpg", "no_corn_01.jpg", "no_corn_02.jpg", ], ).launch(enable_queue=True)