# serve.py # Loads all completed shards and finds the most similar vector to a given query vector. import requests from sentence_transformers import SentenceTransformer import faiss import gradio as gr from markdown_it import MarkdownIt # used for overriding default markdown renderer model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu') works_ids_path = 'openalex_ids.txt' with open(works_ids_path) as f: idxs = f.read().splitlines() index = faiss.read_index('index.faiss') ps = faiss.ParameterSpace() ps.initialize(index) ps.set_index_parameters(index, 'nprobe=16,ht=512') def _recover_abstract(inverted_index): abstract_size = max([max(appearances) for appearances in inverted_index.values()])+1 abstract = [None]*abstract_size for word, appearances in inverted_index.items(): # yes, this is a second iteration over inverted_index for appearance in appearances: abstract[appearance] = word abstract = [word for word in abstract if word is not None] abstract = ' '.join(abstract) return abstract def search(query): global model, index, idxs query_embedding = model.encode(query) query_embedding = query_embedding.reshape(1, -1) distances, faiss_ids = index.search(query_embedding, 20) distances = distances[0] faiss_ids = faiss_ids[0] openalex_ids = [idxs[faiss_id] for faiss_id in faiss_ids] search_filter = f'openalex_id:{"|".join(openalex_ids)}' search_select = 'id,title,abstract_inverted_index,authorships,primary_location,publication_year,cited_by_count,doi' neighbors = [(distance, openalex_id) for distance, openalex_id in zip(distances, openalex_ids)] request_str = f'https://api.openalex.org/works?filter={search_filter}&select={search_select}' return neighbors, request_str def execute_request(request_str): response = requests.get(request_str).json() return response def format_response(neighbors, response): response = {doc['id']: doc for doc in response['results']} result_string = '' for distance, openalex_id in neighbors: doc = response[openalex_id] # collect attributes from openalex doc for the given openalex_id title = doc['title'] abstract = _recover_abstract(doc['abstract_inverted_index']) author_names = [authorship['author']['display_name'] for authorship in doc['authorships']] # journal_name = doc['primary_location']['source']['display_name'] publication_year = doc['publication_year'] citation_count = doc['cited_by_count'] doi = doc['doi'] # try to get journal name or else set it to None try: journal_name = doc['primary_location']['source']['display_name'] except (TypeError, KeyError): journal_name = None # title: knock out escape sequences title = title.replace('\n', '\\n').replace('\r', '\\r') # abstract: knock out escape sequences, then truncate to 1500 characters if necessary abstract = abstract.replace('\n', '\\n').replace('\r', '\\r') if len(abstract) > 2000: abstract = abstract[:2000] + '...' # authors: truncate to 3 authors if necessary if len(author_names) >= 3: authors_str = ', '.join(author_names[:3]) + ', ...' else: authors_str = ', '.join(author_names) entry_string = '' if doi: # edge case: for now, no doi -> no link entry_string += f'## [{title}]({doi})\n\n' else: entry_string += f'## {title}\n\n' if journal_name: entry_string += f'**{authors_str} - {journal_name}, {publication_year}**\n' else: entry_string += f'**{authors_str}, {publication_year}**\n' entry_string += f'{abstract}\n\n' if citation_count: # edge case: we shouldn't tack "Cited-by count: 0" onto someone's paper entry_string += f'*Cited-by count: {citation_count}*' entry_string += '    ' if doi: # list the doi if it exists entry_string += f'*DOI: {doi.replace("https://doi.org/", "")}*' entry_string += '    ' entry_string += f'*Similarity: {distance:.2f}*' entry_string += '    \n' result_string += entry_string return result_string with gr.Blocks() as demo: gr.Markdown('# abstracts-search demo') gr.Markdown( 'Explore 95 million academic publications selected from the [OpenAlex](https://openalex.org) dataset. This ' 'project is an index of the embeddings generated from their titles and abstracts. The embeddings were ' 'generated using the `all-MiniLM-L6-v2` model provided by the [sentence-transformers](https://www.sbert.net/) ' 'module, and the index was built using the [faiss](https://github.com/facebookresearch/faiss) module.' ) neighbors_var = gr.State() request_str_var = gr.State() response_var = gr.State() query = gr.Textbox(lines=1, placeholder='Enter your query here', show_label=False) btn = gr.Button('Search') with gr.Box(): results = gr.Markdown() md = MarkdownIt('js-default', {'linkify': True, 'typographer': True}) # don't render html or latex! results.md = md query.submit(search, inputs=[query], outputs=[neighbors_var, request_str_var]) \ .success(execute_request, inputs=[request_str_var], outputs=[response_var]) \ .success(format_response, inputs=[neighbors_var, response_var], outputs=[results]) btn.click(search, inputs=[query], outputs=[neighbors_var, request_str_var]) \ .success(execute_request, inputs=[request_str_var], outputs=[response_var]) \ .success(format_response, inputs=[neighbors_var, response_var], outputs=[results]) demo.queue(2) demo.launch()