## Fetch Model Registry and clemscores import requests import pandas as pd from datetime import datetime import pandas as pd import plotly.express as px import plotly.graph_objects as go import numpy as np from src.assets.text_content import REGISTRY_URL, REPO, BENCHMARK_FILE from src.leaderboard_utils import get_github_data # Cut-off date from where to start the trendgraph START_DATE = '2023-06-01' def get_param_size(params: str) -> float: """Convert parameter size from string to float. Args: params (str): The parameter size as a string (e.g., '1000B', '1T'). Returns: float: The size of parameters in float. """ if not params: param_size = 0 else: if params[-1] == "B": param_size = params[:-1] param_size = float(param_size) elif params[-1] == "T": param_size = params[:-1] param_size = float(param_size) param_size *= 1000 else: print("Not a valid parameter size") return param_size def date_difference(date_str1: str, date_str2: str) -> int: """Calculate the difference in days between two dates. Args: date_str1 (str): The first date as a string in 'YYYY-MM-DD' format. date_str2 (str): The second date as a string in 'YYYY-MM-DD' format. Returns: int: The difference in days between the two dates. """ date_format = "%Y-%m-%d" date1 = datetime.strptime(date_str1, date_format) date2 = datetime.strptime(date_str2, date_format) return (date1 - date2).days def populate_list(df: pd.DataFrame, abs_diff: float) -> list: """Create a list of models based on clemscore differences. Args: df (pd.DataFrame): DataFrame containing model data. abs_diff (float): The absolute difference threshold for clemscore. Returns: list: A list of model names that meet the criteria. """ l = [df.iloc[0]['model']] prev_clemscore = df.iloc[0]['clemscore'] prev_date = df.iloc[0]['release_date'] for i in range(1, len(df)): curr_clemscore = df.iloc[i]['clemscore'] curr_date = df.iloc[i]['release_date'] date_diff = date_difference(curr_date, prev_date) if curr_clemscore - prev_clemscore >= abs_diff: if date_diff == 0: l[-1] = df.iloc[i]['model'] else: l.append(df.iloc[i]['model']) prev_clemscore = curr_clemscore prev_date = curr_date # # Add the last model if the difference between the last and previous date is greater than 15 days # last_date = df.iloc[-1]['release_date'] # if date_difference(last_date, prev_date) > 15: # l.append(df.iloc[-1]['model']) return l def get_models_to_display(result_df: pd.DataFrame, open_dip: float = 0, comm_dip: float = 0) -> tuple: """Retrieve models to display based on clemscore differences. Args: result_df (pd.DataFrame): DataFrame containing model data. open_dip (float, optional): Threshold for open models. Defaults to 0. comm_dip (float, optional): Threshold for commercial models. Defaults to 0. Returns: tuple: Two lists of model names (open and commercial). """ open_model_df = result_df[result_df['open_weight']==True] comm_model_df = result_df[result_df['open_weight']==False] open_model_df = open_model_df.sort_values(by='release_date', ascending=True) comm_model_df = comm_model_df.sort_values(by='release_date', ascending=True) open_models = populate_list(open_model_df, open_dip) comm_models = populate_list(comm_model_df, comm_dip) return open_models, comm_models def get_trend_data(text_dfs: list, model_registry_data: list) -> pd.DataFrame: """Process text data frames to extract model information. Args: text_dfs (list): List of DataFrames containing model information. model_registry_data (list): List of dictionaries containing model registry data. Returns: pd.DataFrame: DataFrame containing processed model data. """ visited = set() # Track models that have been processed result_df = pd.DataFrame(columns=['model', 'clemscore', 'open_weight', 'release_date', 'parameters', 'est_flag']) for df in text_dfs: for i in range(len(df)): model_name = df['Model'].iloc[i] if model_name not in visited: visited.add(model_name) for dict_obj in model_registry_data: if dict_obj["model_name"] == model_name: if dict_obj["parameters"] == "" : params = "1000B" est_flag = True else: params = dict_obj['parameters'] est_flag = False param_size = get_param_size(params) new_data = {'model': model_name, 'clemscore': df['Clemscore'].iloc[i], 'open_weight':dict_obj['open_weight'], 'release_date': dict_obj['release_date'], 'parameters': param_size, 'est_flag': est_flag} result_df.loc[len(result_df)] = new_data break return result_df # Return the compiled DataFrame def get_plot(df: pd.DataFrame, start_date: str = '2023-06-01', end_date: str = '2024-12-30', benchmark_ticks: dict = {}, benchmark_update = {}, **plot_kwargs) -> go.Figure: """Generate a scatter plot for the given DataFrame. Args: df (pd.DataFrame): DataFrame containing model data. start_date (str, optional): Start date for filtering. Defaults to '2023-06-01'. end_date (str, optional): End date for filtering. Defaults to '2024-12-30'. benchmark_ticks (dict, optional): Custom benchmark ticks for the version dates. Defaults to {}. benchmark_update (dict, optional): Custom benchmark metadata containing last_updated date for the versions. Defaults to {}. Keyword Args: open_dip (float, optional): Threshold for open models' clemscore differences. Max dip in clemscore allowed to be considered in trend. comm_dip (float, optional): Threshold for commercial models' clemscore differences. Max dip in clemscore allowed to be considered in trend. height (int, optional): Height of the plot in pixels. Adjusted for mobile or desktop views. mobile_view (bool, optional): Flag to indicate if the plot should be optimized for mobile display. Defaults to False. Returns: go.Figure: The generated plot. """ open_dip = plot_kwargs['open_dip'] comm_dip = plot_kwargs['comm_dip'] height = plot_kwargs['height'] width = plot_kwargs['width'] mobile_view = True if plot_kwargs['mobile_view'] else False max_clemscore = df['clemscore'].max() # Convert 'release_date' to datetime df['Release date'] = pd.to_datetime(df['release_date'], format='ISO8601') # Filter out data before April 2023/START_DATE df = df[df['Release date'] >= pd.to_datetime(start_date)] open_model_list, comm_model_list = get_models_to_display(df, open_dip, comm_dip) models_to_display = open_model_list + comm_model_list print(f"open_model_list: {open_model_list}, comm_model_list: {comm_model_list}") # Create a column to indicate if the model should be labeled df['label_model'] = df['model'].apply(lambda x: x if x in models_to_display else "") # If mobile_view, then show only the models in models_to_display i.e. on the trend line #minimalistic if mobile_view: df = df[df['model'].isin(models_to_display)] # Add an identifier column to each DataFrame df['Model Type'] = df['open_weight'].map({True: 'Open-Weight', False: 'Commercial'}) marker_size = df['parameters'].apply(lambda x: np.sqrt(x) if x > 0 else np.sqrt(400)).astype(float) # Arbitrary sqrt value to scale marker size based on parameter size open_color = 'red' comm_color = 'blue' # Create the scatter plot fig = px.scatter(df, x="Release date", y="clemscore", color="Model Type", # Differentiates the datasets by color hover_name="model", size=marker_size, size_max=40, # Max size of the circles template="plotly_white", hover_data={ # Customize hover information "Release date": True, # Show the release date "clemscore": True, # Show the clemscore "Model Type": True # Show the model type }, custom_data=["model", "Release date", "clemscore"] # Specify custom data columns for hover ) fig.update_traces( hovertemplate='Model Name: %{customdata[0]}
Release date: %{customdata[1]}
Clemscore: %{customdata[2]}
' ) # Sort dataframes for line plotting df_open = df[df['model'].isin(open_model_list)].sort_values(by='Release date') df_commercial = df[df['model'].isin(comm_model_list)].sort_values(by='Release date') ## Custom tics for x axis # Define the start and end dates start_date = pd.to_datetime(start_date) end_date = pd.to_datetime(end_date) # Generate ticks every two months date_range = pd.date_range(start=start_date, end=end_date, freq='2MS') # '2MS' stands for 2 Months Start frequency # Create labels for these ticks custom_ticks = {date: date.strftime('%b %Y') for date in date_range} ## Benchmark Version ticks benchmark_tickvals = list(pd.to_datetime(list(benchmark_ticks.keys()))) custom_ticks = {k:v for k,v in custom_ticks.items() if k not in benchmark_tickvals} custom_tickvals = list(custom_ticks.keys()) for date, version in benchmark_ticks.items(): # Find the corresponding update date from benchmark_update based on the version name update_date = next((update_date for update_date, ver in benchmark_update.items() if version in ver), None) if update_date: # Add vertical black dotted line for each benchmark_tick date fig.add_shape( go.layout.Shape( type='line', x0=date, x1=date, y0=0, y1=1, yref='paper', line=dict(color='#A9A9A9', dash='dash'), # Black dotted line ) ) # Add hover information across the full y-axis range fig.add_trace( go.Scatter( x=[date]*100, y=list(range(0,100)), # Covers full y-axis range mode='markers', line=dict(color='rgba(255,255,255,0)', width=0), # Fully transparent line hovertext=[ f"Version: {version} released on {date.strftime('%d %b %Y')}, last updated on: {update_date.strftime('%d %b %Y')}" for _ in range(100) ], # Unique hovertext for all points hoverinfo="text", hoveron='points', showlegend=False ) ) if mobile_view: # Remove custom_tickvals within -1 month to +1 month of benchmark_tickvals for better visibility one_month = pd.DateOffset(months=1) filtered_custom_tickvals = [ date for date in custom_tickvals if not any((benchmark_date - one_month <= date <= benchmark_date + one_month) for benchmark_date in benchmark_tickvals) ] # Alternate
for benchmark ticks based on date difference (Eg. v1.6, v1.6.5 too close to each other for MM benchmark) benchmark_tick_texts = [] for i in range(len(benchmark_tickvals)): if i == 0: benchmark_tick_texts.append(f"

{benchmark_ticks[benchmark_tickvals[i]]}") else: date_diff = (benchmark_tickvals[i] - benchmark_tickvals[i - 1]).days if date_diff <= 75: benchmark_tick_texts.append(f"


{benchmark_ticks[benchmark_tickvals[i]]}") else: benchmark_tick_texts.append(f"

{benchmark_ticks[benchmark_tickvals[i]]}") fig.update_xaxes( tickvals=filtered_custom_tickvals + benchmark_tickvals, # Use filtered_custom_tickvals ticktext=[f"{date.strftime('%b')}
{date.strftime('%y')}" for date in filtered_custom_tickvals] + benchmark_tick_texts, # Use the new benchmark tick texts tickangle=0, tickfont=dict(size=10) ) fig.update_yaxes(range=[0, 110]) # Set y-axis range to 110 for better visibility of legend and avoiding overlap with interactivity block of plotly on top-right display_mode = 'lines+markers' else: fig.update_xaxes( tickvals=custom_tickvals + benchmark_tickvals, # Use filtered_custom_tickvals ticktext=[f"{date.strftime('%b')} {date.strftime('%Y')}" for date in custom_tickvals] + [f"
{benchmark_ticks[date]}" for date in benchmark_tickvals], # Added
for vertical alignment tickangle=0, tickfont=dict(size=10) ) fig.update_yaxes(range=[0, max_clemscore+10]) display_mode = 'lines+markers+text' # Add lines connecting the points for open models fig.add_trace(go.Scatter(x=df_open['Release date'], y=df_open['clemscore'], mode=display_mode, # Include 'text' in the mode name='Open Models Trendline', text=df_open['label_model'], # Use label_model for text labels textposition='top center', # Position of the text labels line=dict(color=open_color), showlegend=False)) # Add lines connecting the points for commercial models fig.add_trace(go.Scatter(x=df_commercial['Release date'], y=df_commercial['clemscore'], mode=display_mode, # Include 'text' in the mode name='Commercial Models Trendline', text=df_commercial['label_model'], # Use label_model for text labels textposition='top center', # Position of the text labels line=dict(color=comm_color), showlegend=False)) # Update layout to ensure text labels are visible fig.update_traces(textposition='top center') # Update the Legend Position and plot dimensions fig.update_layout(height=height, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ) ) if width: print("Custom Seting the Width :") fig.update_layout(width=width) return fig def get_final_trend_plot(benchmark: str = "Text", mobile_view: bool = False) -> go.Figure: """Fetch and generate the final trend plot for all models. Args: benchmark (str, optional): The benchmark type to use. Defaults to "Text". mobile_view (bool, optional): Flag to indicate mobile view. Defaults to False. Returns: go.Figure: The generated trend plot for selected benchmark. """ # Fetch Model Registry response = requests.get(REGISTRY_URL) model_registry_data = response.json() # Custom tick labels json_url = REPO + BENCHMARK_FILE response = requests.get(json_url) # Check if the JSON file request was successful if response.status_code != 200: print(f"Failed to read JSON file: Status Code: {response.status_code}") json_data = response.json() versions = json_data['versions'] if mobile_view: height = 450 width = 375 else: height = 1000 width = None plot_kwargs = {'height': height, 'width': width, 'open_dip': 0, 'comm_dip': 0, 'mobile_view': mobile_view} benchmark_ticks = {} benchmark_update = {} if benchmark == "Text": text_dfs = get_github_data()['text']['dataframes'] text_result_df = get_trend_data(text_dfs, model_registry_data) ## Get benchmark tickvalues as dates for X-axis for ver in versions: if 'multimodal' not in ver['version']: # Skip MM specific benchmark dates benchmark_ticks[pd.to_datetime(ver['release_date'])] = ver['version'] if pd.to_datetime(ver['last_updated']) not in benchmark_update: benchmark_update[pd.to_datetime(ver['last_updated'])] = [ver['version']] else: benchmark_update[pd.to_datetime(ver['last_updated'])].append(ver['version']) fig = get_plot(text_result_df, start_date=START_DATE, end_date=datetime.now().strftime('%Y-%m-%d'), benchmark_ticks=benchmark_ticks, benchmark_update=benchmark_update, **plot_kwargs) else: mm_dfs = get_github_data()['multimodal']['dataframes'] result_df = get_trend_data(mm_dfs, model_registry_data) df = result_df for ver in versions: if 'multimodal' in ver['version']: temp_ver = ver['version'] temp_ver = temp_ver.replace('_multimodal', '') benchmark_ticks[pd.to_datetime(ver['release_date'])] = temp_ver ## MM benchmark dates considered after v1.6 (incl.) benchmark_update[pd.to_datetime(ver['last_updated'])] = temp_ver fig = get_plot(df, start_date=START_DATE, end_date=datetime.now().strftime('%Y-%m-%d'), benchmark_ticks=benchmark_ticks, benchmark_update=benchmark_update, **plot_kwargs) return fig