import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed from transformers import pipeline title = "CodeParrot Generator 🦜" description = "This is a subspace to make code generation with CodeParrot, it is used in a larger space for model comparison." examples = "def print_hello_world():\n \"""Print 'Hello world' \""" " tokenizer = load_tokenizer("lvwerra/codeparrot") model = load_model("lvwerra/codeparrot") def code_generation(gen_prompt, strategy, max_tokens, seed=42): set_seed(seed) gen_kwargs = {} gen_kwargs["do_sample"] = strategy == "Sample" gen_kwargs["max_new_tokens"] = max_tokens if gen_kwargs["do_sample"]: gen_kwargs["temperature"] = 0.2 gen_kwargs["top_k"] = 0 gen_kwargs["top_p"] = 0.95 pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text'] return generated_text interface = gr.Interface( fn=code_generation, inputs=[ gr.Textbox(lines=10, label="Input code"), gr.Dropdown(choices=["Greedy", "Sample"], value="Greedy"), gr.inputs.Slider( minimum=8, maximum=256, step=1, default=8, label="Number of tokens to generate", ), gr.inputs.Slider( minimum=0, maximum=1000, step=1, default=42, label="Random seed to use for the generation" ) ], outputs=gr.Textbox(label="Predicted code", lines=10)), examples=examples, layout="horizontal", theme="peach", description=description, title=title ) interface.launch()