import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import pipeline @st.cache(allow_output_mutation=True) def load_tokenizer(model_ckpt): return AutoTokenizer.from_pretrained(model_ckpt) @st.cache(allow_output_mutation=True) def load_model(model_ckpt): model = AutoModelForCausalLM.from_pretrained(model_ckpt) return model st.set_page_config(page_icon=':parrot:', layout="wide") default_code = '''\ def print_hello_world():\ ''' model_ckpt = "lvwerra/codeparrot" tokenizer = load_tokenizer(model_ckpt) model = load_model(model_ckpt) gen_kwargs = {} st.title("CodeParrot 🦜") st.markdown('##') pipe = pipeline('text-generation', model=model, tokenizer=tokenizer) st.sidebar.header("Generation settings:") gen_kwargs["do_sample"] = st.sidebar.radio("Decoding strategy", ["Greedy", "Sample"]) == "Sample" gen_kwargs["max_new_tokens"] = st.sidebar.slider("Number of tokens to generate", value=16, min_value = 8, max_value=256) if gen_kwargs["do_sample"]: temperature = st.sidebar.slider("Temperature", value = 0.2, min_value = 0.0, max_value=2.0, step=0.05) gen_kwargs["top_k"] = st.sidebar.slider("Top-k", min_value = 0, max_value=100, value = 0) gen_kwargs["top_p"] = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.01, value = 0.95) gen_prompt = st.text_area("Generate code with prompt:", value=default_code, height=220,).strip() if st.button("Generate code!"): with st.spinner("Generating code..."): generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text'] st.code(generated_text)