import json import os import pandas as pd import requests import threading import streamlit as st from datasets import load_dataset, load_metric MODELS = ["CodeParrot", "InCoder", "CodeGen", "PolyCoder"] GENERATION_MODELS = ["CodeParrot", "InCoder", "CodeGen"] @st.cache() def load_examples(): with open("utils/examples.json", "r") as f: examples = json.load(f) return examples def load_evaluation(): # load task 2 of HumanEval and code_eval_metric os.environ["HF_ALLOW_CODE_EVAL"] = "1" human_eval = load_dataset("openai_humaneval") entry_point = f"check({human_eval['test'][2]['entry_point']})" test_func = "\n" + human_eval["test"][2]["test"] + "\n" + entry_point code_eval = load_metric("code_eval") return code_eval, test_func def read_markdown(path): with open(path, "r") as f: output = f.read() st.markdown(output, unsafe_allow_html=True) def generate_code( generations, model_name, gen_prompt, max_new_tokens, temperature, seed ): # call space using its API endpoint url = ( f"https://hf.space/embed/codeparrot/{model_name.lower()}-subspace/+/api/predict/" ) r = requests.post( url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]} ) generated_text = r.json()["data"][0] generations.append({model_name: generated_text}) def generate_code_threads( generations, models, gen_prompt, max_new_tokens, temperature, seed ): threads = [] for model_name in models: # create the thread threads.append( threading.Thread( target=generate_code, args=( generations, model_name, gen_prompt, max_new_tokens, temperature, seed, ), ) ) threads[-1].start() for t in threads: t.join() @st.cache(show_spinner=False) def generate_teaser(gen_prompt): generations = [] generate_code(generations, "CodeParrot", gen_prompt, 8, 0.2, 42) return generations[0]["CodeParrot"] st.set_page_config(page_icon=":laptop:", layout="wide") with open("utils/table_contents.md", "r") as f: contents = f.read() st.sidebar.markdown(contents) # Introduction st.title("Code generation with 🤗") read_markdown("utils/summary.md") ## teaser example_text = "def print_hello_world():" col1, col2, col3 = st.columns([1, 2, 1]) with col2: gen_prompt = st.text_area( "", value=example_text, height=100, ).strip() if st.button("Generate code!", key=1): with st.spinner("Generating code..."): st.code(generate_teaser(gen_prompt)) read_markdown("utils/intro.md") # Code datasets st.subheader("1 - Code datasets") read_markdown("datasets/intro.md") read_markdown("datasets/github_code.md") col1, col2 = st.columns([1, 2]) with col1: selected_model = st.selectbox("", MODELS, key=1) read_markdown(f"datasets/{selected_model.lower()}.md") # Model architecture st.subheader("2 - Model architecture") read_markdown("architectures/intro.md") col1, col2 = st.columns([1, 2]) with col1: selected_model = st.selectbox("", MODELS, key=2) read_markdown(f"architectures/{selected_model.lower()}.md") # Model evaluation st.subheader("3 - Code model evaluation") read_markdown("evaluation/intro.md") read_markdown("evaluation/demo_humaneval.md") ## quiz st.markdown("Below you can try solving this problem or visualize the solution of CodeParrot:") with open("evaluation/problem.md", "r") as f: problem = f.read() with open("evaluation/solution.md", "r") as f: solution = f.read() candidate_solution = st.text_area( "Complete the problem:", value=problem, height=240, ).strip() if st.button("Test my solution", key=2): with st.spinner("Testing..."): code_eval, test_func = load_evaluation() test_cases = [test_func] candidates = [[candidate_solution]] pass_at_k, _ = code_eval.compute(references=test_cases, predictions=candidates) text = "Your solution didn't pass the test, pass@1 is 0 😕" if pass_at_k['pass@1'] < 1 else "Congrats your pass@1 is 1! 🎉" st.markdown(text) if st.button("Show model solution", key=3): st.markdown(solution) # Code generation st.subheader("4 - Code generation ✨") read_markdown("generation/intro.md") col1, col2, col3 = st.columns([7, 1, 6]) with col1: st.markdown("**Models**") selected_models = st.multiselect( "Select code generation models to compare:", GENERATION_MODELS, default=GENERATION_MODELS, key=3, ) st.markdown(" ") st.markdown("**Examples**") examples = load_examples() example_names = [example["name"] for example in examples] name2id = dict([(name, i) for i, name in enumerate(example_names)]) selected_example = st.selectbox( "Select one of the following examples or implement yours:", example_names ) example_text = examples[name2id[selected_example]]["value"] default_length = examples[name2id[selected_example]]["length"] with col3: st.markdown("**Generation settings**") temperature = st.slider( "Temperature:", value=0.2, min_value=0.1, step=0.1, max_value=2.0 ) max_new_tokens = st.slider( "Number of tokens to generate:", value=default_length, min_value=8, step=4, max_value=256, ) seed = st.slider("Random seed:", value=42, min_value=0, step=1, max_value=1000) gen_prompt = st.text_area( "Generate code with prompt:", value=example_text, height=200, ).strip() if st.button("Generate code!", key=4): with st.spinner("Generating code..."): # use threading generations = [] generate_code_threads( generations, selected_models, gen_prompt=gen_prompt, max_new_tokens=max_new_tokens, temperature=temperature, seed=seed, ) for i in range(len(generations)): st.markdown(f"**{selected_models[i]}**") for j in range(len(generations)): if selected_models[i] in generations[j].keys(): st.code(generations[j][selected_models[i]]) if len(generations) < len(selected_models): st.markdown("<span style='color:red'>Warning: Some models run into timeout, try another time or reduce the Number of tokens to generate. You can also try generating code using the original subspaces: [InCoder](https://huggingface.co/spaces/loubnabnl/incoder-subspace), [CodeGen](https://huggingface.co/spaces/loubnabnl/codegen-subspace), [CodeParrot](https://huggingface.co/spaces/loubnabnl/codeparrot-subspace)</span>", unsafe_allow_html=True) # Resources st.subheader("Resources") read_markdown("utils/resources.md")