import os import tempfile from io import BytesIO import time import openai import streamlit as st from langchain.document_loaders import TextLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from utils import compute_sha1_from_content from langchain.schema import Document from stats import add_usage # Create a function to transcribe audio using Whisper def _transcribe_audio(api_key, audio_file, stats_db): openai.api_key = api_key transcript = "" with BytesIO(audio_file.read()) as audio_bytes: # Get the extension of the uploaded file file_extension = os.path.splitext(audio_file.name)[-1] # Create a temporary file with the uploaded audio data and the correct extension with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as temp_audio_file: temp_audio_file.write(audio_bytes.read()) temp_audio_file.seek(0) # Move the file pointer to the beginning of the file # Transcribe the temporary audio file if st.secrets.self_hosted == "false": add_usage(stats_db, "embedding", "audio", metadata={"file_name": audio_file.name,"file_type": file_extension}) transcript = openai.Audio.translate("whisper-1", temp_audio_file) return transcript def process_audio(vector_store, file_name, stats_db): if st.secrets.self_hosted == "false": if file_name.size > 10000000: st.error("File size is too large. Please upload a file smaller than 1MB.") return file_sha = "" dateshort = time.strftime("%Y%m%d-%H%M%S") file_meta_name = f"audiotranscript_{dateshort}.txt" openai_api_key = st.secrets["openai_api_key"] transcript = _transcribe_audio(openai_api_key, file_name, stats_db) file_sha = compute_sha1_from_content(transcript.text.encode("utf-8")) ## file size computed from transcript file_size = len(transcript.text.encode("utf-8")) ## Load chunk size and overlap from sidebar chunk_size = st.session_state['chunk_size'] chunk_overlap = st.session_state['chunk_overlap'] text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) texts = text_splitter.split_text(transcript.text) docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha,"file_size": file_size, "file_name": file_meta_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for text in texts] if st.secrets.self_hosted == "false": add_usage(stats_db, "embedding", "audio", metadata={"file_name": file_meta_name,"file_type": ".txt", "chunk_size": chunk_size, "chunk_overlap": chunk_overlap}) vector_store.add_documents(docs_with_metadata) return vector_store