from openai import OpenAI # from google.colab import userdata import os import gradio as gr # openai_key = userdata.get('OPENAI_API_KEY') # SD_API_KEY = userdata.get('SD_API_KEY') # API 키를 환경 변수에서 읽어오기 openai_key = os.environ.get('OPENAI_API_KEY') SD_API_KEY = os.environ.get('SD_API_KEY') os.environ["OPENAI_API_KEY"] = openai_key # 자동 프롬프트 생성 def novel_keyword(nobel_input): system_prompt = "당신은 주어지는 내용에 어울리는 이미지를 추천하는 합니다. 이미지를 묘사하는 키워드를 영어로, 콤마로 알려주세요" client = OpenAI() completion = client.chat.completions.create( model="gpt-3.5-turbo", temperature=0, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": nobel_input} ]) return completion.choices[0].message.content # 스테이블 디퓨전 기본 이미지 API 요청 import requests import json def sd_call(prompt, width, height): url = "https://stablediffusionapi.com/api/v3/text2img" payload = json.dumps({ "key": SD_API_KEY, "prompt": prompt, "negative_prompt": "ng_deepnegative_v1_75t, (worst quality:1.4), (low quality:1.4), (normal quality:1.4), lowres, (nsfw:1.4)", "width": width, "height": height, "samples": "1", "num_inference_steps": "20", "seed": None, "guidance_scale": 7.5, "safety_checker": "yes", "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings_model": None, "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) response_data = json.loads(response.text) if response_data["status"] == "success": image_link = response_data["output"][0] fetch_result = "이미지 생성이 완료되었습니다" elif response_data["status"] == "processing": image_link = None fetch_result = response_data["fetch_result"] else: image_link = None fetch_result = "실패입니다 다시 실행해 주세요" return image_link, fetch_result def sd_recall(fetch_result): url = fetch_result payload = json.dumps({ "key": SD_API_KEY }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) response_data = json.loads(response.text) image_link = response_data["output"] if not image_link: image_link = None else: image_link = image_link[0] return image_link def edit_load_img(img_url): return img_url import base64 def image_to_base64(image_path): with open(image_path, "rb") as image_file: encoded_image = base64.b64encode(image_file.read()) encoded_string = encoded_image.decode('utf-8') return encoded_string from io import BytesIO from PIL import Image def save_base64_image_from_url(url): file_path = "edit_img.png" response = requests.get(url) base64_string = response.text image_data = base64.b64decode(base64_string) image = Image.open(BytesIO(image_data)) image.save(file_path) return file_path def edit_img_generator(input_img, prompt): # 이미지 저장 background_img = input_img['background'] background_img = Image.fromarray(background_img) background_img_path = "background_img.png" background_img.save(background_img_path) mask_img = input_img['layers'][0] mask_img_arr = Image.fromarray(mask_img) mask_img_arr_path = "masked_img.png" mask_img_arr.save(mask_img_arr_path) mask_img_arr = Image.fromarray(mask_img) mask_img_arr_path = "masked_img.png" mask_img_arr.save(mask_img_arr_path) background_img_base64 = image_to_base64(background_img_path) mask_img_base64 = image_to_base64(mask_img_arr_path) # inpaint 요청 파트 url = "https://stablediffusionapi.com/api/v3/inpaint" payload = json.dumps({ "key": SD_API_KEY, "prompt": prompt, "negative_prompt": None, "init_image": background_img_base64, "mask_image": mask_img_base64, "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "guidance_scale": 7.5, "strength": 0.7, "base64": "yes", "seed": None, "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) response_data = json.loads(response.text) if response_data["status"] == "success": image_link = save_base64_image_from_url(response_data["output"][0]) fetch_result = "" elif response_data["status"] == "processing": image_link = None fetch_result = response_data["fetch_result"] else: image_link = None fetch_result = "실패입니다 다시 실행해 주세요" print("결과입니다", response_data) return image_link, fetch_result # edit 이미지 다시 불러오기 def sd_edit_recall(fetch_result): edit_url = sd_recall(fetch_result) image_link = save_base64_image_from_url(edit_url) return image_link with gr.Blocks(theme=gr.themes.Default()) as app: with gr.Tab("삽화 생성"): with gr.Row(): # 1 gr.Markdown( value=""" # 삽화 생성 짧은 소설에 어울리는 이미지를 생성할 수 있습니다. """ ) with gr.Row(): # column1 with gr.Column(scale=5): # 2 pos_prompt = gr.Textbox( label="이미지 생성 프롬프트를 작성해 주세요", value="ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner))", lines=8, interactive=True, ) with gr.Row(): # 3 auto_prompt_generator = gr.Textbox( label="자동 프롬프트 생성", lines=6, placeholder="이미지 생성을 위한 소설 내용을 작성해 주세요.\n자동으로 프롬프트가 생성됩니다.", scale=7, ) # 4 prompt_generator_btn = gr.Button(scale=1, value="자동\n생성") with gr.Group(): with gr.Row(): # 5 img_width = gr.Slider( label="=Width", maximum=1024, value=512, interactive=True ) # 6 img_height = gr.Slider( label="=Height", maximum=1024, value=512, interactive=True ) # column2 with gr.Column(scale=3): # 7 output_status = gr.Textbox( show_label=False, lines=1, placeholder="이미지 상태가 출력됩니다." ) # 8 generator_img = gr.Image( value="https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/8c595b57-563c-4417-9bfb-96aaebbb30b3-0.png", label="이미지가 생성됩니다.", ) # 9 generator_img_btn = gr.Button(value="이미지 생성") # 10 refresh_img_btn = gr.Button(value="이미지 새로고침") # 자동 생성 버튼 클릭 prompt_generator_btn.click( fn=novel_keyword, inputs=[auto_prompt_generator], outputs=[pos_prompt] ) # 이미지 생성 버튼 클릭 generator_img_btn.click( fn=sd_call, inputs=[pos_prompt, img_width, img_height], outputs=[generator_img, output_status] ) # 이미지 새로고침 버튼 클릭 refresh_img_btn.click( fn=sd_recall, inputs=[output_status], outputs=[generator_img] ) with gr.Tab("이미지 편집") as edit_tab: with gr.Row(): #1 gr.Markdown( value=""" # 이미지 편집 생성한 이미지를 편집할 수 있습니다. """) with gr.Row(): #2 edit_prompt = gr.Textbox( label="이미지 수정 프롬프트를 작성해 주세요", value="black hair", lines=5, interactive=True, scale=7 ) #3 edit_btn = gr.Button( value="이미지 편집", scale=1 ) with gr.Row(): #4 edit_status = gr.Textbox( show_label=False, lines=1, placeholder="편집 이미지 상태가 출력됩니다.", scale=7 ) #5 refresh_edit_btn = gr.Button( value="이미지 새로고침", scale=1 ) with gr.Row(): #6 org_img = gr.ImageMask( label="수정 전 이미지", image_mode='RGB', brush = gr.Brush( default_size=20, colors=["#FFFFFF"], color_mode="fixed", ), show_label=True ) #7 edit_img = gr.Image( label="수정 후 이미지", ) edit_tab.select( fn=edit_load_img, inputs=[generator_img], outputs=[org_img] ) #이미지 편집 버튼 클릭 edit_btn.click( fn=edit_img_generator, inputs=[org_img, edit_prompt], outputs=[edit_img, edit_status] ) #이미지 refresh_edit_btn.click( fn=sd_edit_recall, inputs=[edit_status], outputs=[edit_img] ) app.launch(debug=True)