import os import random import gradio as gr import numpy as np import torch from diffusers import DiffusionPipeline #import spaces import uuid DESCRIPTION = """# SPRIGHT T2I [SPRIGHT T2I](https://spright-t2i.github.io/) is a framework to improve the spatial consistency of text-to-image models WITHOUT compromising their fidelity aspects. """ if torch.cuda.is_available(): device = "cuda" elif torch.backends.mps.is_available(): device = "mps" else: device = "cpu" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES", "1") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) DEFAULT_IMAGE_SIZE = 1024 torch_dtype = torch.float16 if device == "cpu" or device == "mps": DEFAULT_IMAGE_SIZE = 512 torch_dtype = torch.float32 pipe_id = "SPRIGHT-T2I/spright-t2i-sd2" pipe = DiffusionPipeline.from_pretrained( pipe_id, torch_dtype=torch_dtype, use_safetensors=True, ).to(device) def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed #@spaces.GPU def generate( prompt: str, seed: int = 0, width: int = 768, height: int = 768, guidance_scale: float = 7.5, num_inference_steps: int = 50, randomize_seed: bool = False, progress=gr.Progress(track_tqdm=True), ): seed = randomize_seed_fn(seed, randomize_seed) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, ).images[0] image_path = save_image(image) print(image_path) return [image_path], seed examples = [ "A cat next to a suitcase", "A candle on the left of a mouse", "A bag on the right of a dog", "A mouse on the top of a bowl", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=1, show_label=False) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=20, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=10, maximum=100, step=1, value=50, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate, inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()