# Copyright (c) Facebook, Inc. and its affiliates. from typing import Any, Dict, List, Tuple import torch from torch.nn import functional as F from detectron2.structures import BoxMode, Instances from densepose.converters import ToChartResultConverter from densepose.converters.base import IntTupleBox, make_int_box from densepose.structures import DensePoseDataRelative, DensePoseList class DensePoseBaseSampler: """ Base DensePose sampler to produce DensePose data from DensePose predictions. Samples for each class are drawn according to some distribution over all pixels estimated to belong to that class. """ def __init__(self, count_per_class: int = 8): """ Constructor Args: count_per_class (int): the sampler produces at most `count_per_class` samples for each category """ self.count_per_class = count_per_class def __call__(self, instances: Instances) -> DensePoseList: """ Convert DensePose predictions (an instance of `DensePoseChartPredictorOutput`) into DensePose annotations data (an instance of `DensePoseList`) """ boxes_xyxy_abs = instances.pred_boxes.tensor.clone().cpu() boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) dp_datas = [] for i in range(len(boxes_xywh_abs)): annotation_i = self._sample(instances[i], make_int_box(boxes_xywh_abs[i])) annotation_i[DensePoseDataRelative.S_KEY] = self._resample_mask( # pyre-ignore[6] instances[i].pred_densepose ) dp_datas.append(DensePoseDataRelative(annotation_i)) # create densepose annotations on CPU dp_list = DensePoseList(dp_datas, boxes_xyxy_abs, instances.image_size) return dp_list def _sample(self, instance: Instances, bbox_xywh: IntTupleBox) -> Dict[str, List[Any]]: """ Sample DensPoseDataRelative from estimation results """ labels, dp_result = self._produce_labels_and_results(instance) annotation = { DensePoseDataRelative.X_KEY: [], DensePoseDataRelative.Y_KEY: [], DensePoseDataRelative.U_KEY: [], DensePoseDataRelative.V_KEY: [], DensePoseDataRelative.I_KEY: [], } n, h, w = dp_result.shape for part_id in range(1, DensePoseDataRelative.N_PART_LABELS + 1): # indices - tuple of 3 1D tensors of size k # 0: index along the first dimension N # 1: index along H dimension # 2: index along W dimension indices = torch.nonzero(labels.expand(n, h, w) == part_id, as_tuple=True) # values - an array of size [n, k] # n: number of channels (U, V, confidences) # k: number of points labeled with part_id values = dp_result[indices].view(n, -1) k = values.shape[1] count = min(self.count_per_class, k) if count <= 0: continue index_sample = self._produce_index_sample(values, count) sampled_values = values[:, index_sample] sampled_y = indices[1][index_sample] + 0.5 sampled_x = indices[2][index_sample] + 0.5 # prepare / normalize data x = (sampled_x / w * 256.0).cpu().tolist() y = (sampled_y / h * 256.0).cpu().tolist() u = sampled_values[0].clamp(0, 1).cpu().tolist() v = sampled_values[1].clamp(0, 1).cpu().tolist() fine_segm_labels = [part_id] * count # extend annotations annotation[DensePoseDataRelative.X_KEY].extend(x) annotation[DensePoseDataRelative.Y_KEY].extend(y) annotation[DensePoseDataRelative.U_KEY].extend(u) annotation[DensePoseDataRelative.V_KEY].extend(v) annotation[DensePoseDataRelative.I_KEY].extend(fine_segm_labels) return annotation def _produce_index_sample(self, values: torch.Tensor, count: int): """ Abstract method to produce a sample of indices to select data To be implemented in descendants Args: values (torch.Tensor): an array of size [n, k] that contains estimated values (U, V, confidences); n: number of channels (U, V, confidences) k: number of points labeled with part_id count (int): number of samples to produce, should be positive and <= k Return: list(int): indices of values (along axis 1) selected as a sample """ raise NotImplementedError def _produce_labels_and_results(self, instance: Instances) -> Tuple[torch.Tensor, torch.Tensor]: """ Method to get labels and DensePose results from an instance Args: instance (Instances): an instance of `DensePoseChartPredictorOutput` Return: labels (torch.Tensor): shape [H, W], DensePose segmentation labels dp_result (torch.Tensor): shape [2, H, W], stacked DensePose results u and v """ converter = ToChartResultConverter chart_result = converter.convert(instance.pred_densepose, instance.pred_boxes) labels, dp_result = chart_result.labels.cpu(), chart_result.uv.cpu() return labels, dp_result def _resample_mask(self, output: Any) -> torch.Tensor: """ Convert DensePose predictor output to segmentation annotation - tensors of size (256, 256) and type `int64`. Args: output: DensePose predictor output with the following attributes: - coarse_segm: tensor of size [N, D, H, W] with unnormalized coarse segmentation scores - fine_segm: tensor of size [N, C, H, W] with unnormalized fine segmentation scores Return: Tensor of size (S, S) and type `int64` with coarse segmentation annotations, where S = DensePoseDataRelative.MASK_SIZE """ sz = DensePoseDataRelative.MASK_SIZE S = ( F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False) .argmax(dim=1) .long() ) I = ( ( F.interpolate( output.fine_segm, (sz, sz), mode="bilinear", align_corners=False, ).argmax(dim=1) * (S > 0).long() ) .squeeze() .cpu() ) # Map fine segmentation results to coarse segmentation ground truth # TODO: extract this into separate classes # coarse segmentation: 1 = Torso, 2 = Right Hand, 3 = Left Hand, # 4 = Left Foot, 5 = Right Foot, 6 = Upper Leg Right, 7 = Upper Leg Left, # 8 = Lower Leg Right, 9 = Lower Leg Left, 10 = Upper Arm Left, # 11 = Upper Arm Right, 12 = Lower Arm Left, 13 = Lower Arm Right, # 14 = Head # fine segmentation: 1, 2 = Torso, 3 = Right Hand, 4 = Left Hand, # 5 = Left Foot, 6 = Right Foot, 7, 9 = Upper Leg Right, # 8, 10 = Upper Leg Left, 11, 13 = Lower Leg Right, # 12, 14 = Lower Leg Left, 15, 17 = Upper Arm Left, # 16, 18 = Upper Arm Right, 19, 21 = Lower Arm Left, # 20, 22 = Lower Arm Right, 23, 24 = Head FINE_TO_COARSE_SEGMENTATION = { 1: 1, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5, 7: 6, 8: 7, 9: 6, 10: 7, 11: 8, 12: 9, 13: 8, 14: 9, 15: 10, 16: 11, 17: 10, 18: 11, 19: 12, 20: 13, 21: 12, 22: 13, 23: 14, 24: 14, } mask = torch.zeros((sz, sz), dtype=torch.int64, device=torch.device("cpu")) for i in range(DensePoseDataRelative.N_PART_LABELS): mask[I == i + 1] = FINE_TO_COARSE_SEGMENTATION[i + 1] return mask