# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional from einops import rearrange class InflatedConv3d(nn.Conv2d): def forward(self, x): video_length = x.shape[2] x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) return x class InflatedGroupNorm(nn.GroupNorm): def forward(self, x): video_length = x.shape[2] x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) return x class Upsample3D(nn.Module): def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name conv = None if use_conv_transpose: raise NotImplementedError elif use_conv: self.conv = InflatedConv3d( self.channels, self.out_channels, 3, padding=1) def forward(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels if self.use_conv_transpose: raise NotImplementedError # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=[ 1.0, 2.0, 2.0], mode="nearest") else: hidden_states = F.interpolate( hidden_states, size=output_size, mode="nearest") # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) # if self.use_conv: # if self.name == "conv": # hidden_states = self.conv(hidden_states) # else: # hidden_states = self.Conv2d_0(hidden_states) hidden_states = self.conv(hidden_states) return hidden_states class Downsample3D(nn.Module): def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: self.conv = InflatedConv3d( self.channels, self.out_channels, 3, stride=stride, padding=padding) else: raise NotImplementedError def forward(self, hidden_states): assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: raise NotImplementedError assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states class ResnetBlock3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", output_scale_factor=1.0, use_in_shortcut=None, use_inflated_groupnorm=None, use_temporal_conv=False, use_temporal_mixer=False, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.output_scale_factor = output_scale_factor self.use_temporal_mixer = use_temporal_mixer if use_temporal_mixer: self.temporal_mixer = AlphaBlender(0.3, "learned", None) if groups_out is None: groups_out = groups assert use_inflated_groupnorm != None if use_inflated_groupnorm: self.norm1 = InflatedGroupNorm( num_groups=groups, num_channels=in_channels, eps=eps, affine=True) else: self.norm1 = torch.nn.GroupNorm( num_groups=groups, num_channels=in_channels, eps=eps, affine=True) if use_temporal_conv: self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=( 3, 1, 1), stride=1, padding=(1, 0, 0)) else: self.conv1 = InflatedConv3d( in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": time_emb_proj_out_channels = out_channels elif self.time_embedding_norm == "scale_shift": time_emb_proj_out_channels = out_channels * 2 else: raise ValueError( f"unknown time_embedding_norm : {self.time_embedding_norm} ") self.time_emb_proj = torch.nn.Linear( temb_channels, time_emb_proj_out_channels) else: self.time_emb_proj = None if use_inflated_groupnorm: self.norm2 = InflatedGroupNorm( num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) else: self.norm2 = torch.nn.GroupNorm( num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) if use_temporal_conv: self.conv2 = nn.Conv3d(in_channels, out_channels, kernel_size=( 3, 1, 1), stride=1, padding=(1, 0, 0)) else: self.conv2 = InflatedConv3d( out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = InflatedConv3d( in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_tensor, temb): if self.use_temporal_mixer: residual = input_tensor hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[ :, :, None, None, None] if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / \ self.output_scale_factor if self.use_temporal_mixer: output_tensor = self.temporal_mixer(residual, output_tensor, None) # return residual + 0.0 * self.temporal_mixer(residual, output_tensor, None) return output_tensor class Mish(torch.nn.Module): def forward(self, hidden_states): return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) class AlphaBlender(nn.Module): strategies = ["learned", "fixed", "learned_with_images"] def __init__( self, alpha: float, merge_strategy: str = "learned_with_images", rearrange_pattern: str = "b t -> (b t) 1 1", ): super().__init__() self.merge_strategy = merge_strategy self.rearrange_pattern = rearrange_pattern self.scaler = 10. assert ( merge_strategy in self.strategies ), f"merge_strategy needs to be in {self.strategies}" if self.merge_strategy == "fixed": self.register_buffer("mix_factor", torch.Tensor([alpha])) elif ( self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images" ): self.register_parameter( "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) ) else: raise ValueError(f"unknown merge strategy {self.merge_strategy}") def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor: if self.merge_strategy == "fixed": alpha = self.mix_factor elif self.merge_strategy == "learned": alpha = torch.sigmoid(self.mix_factor*self.scaler) elif self.merge_strategy == "learned_with_images": assert image_only_indicator is not None, "need image_only_indicator ..." alpha = torch.where( image_only_indicator.bool(), torch.ones(1, 1, device=image_only_indicator.device), rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"), ) alpha = rearrange(alpha, self.rearrange_pattern) else: raise NotImplementedError return alpha def forward( self, x_spatial: torch.Tensor, x_temporal: torch.Tensor, image_only_indicator: Optional[torch.Tensor] = None, ) -> torch.Tensor: alpha = self.get_alpha(image_only_indicator) x = ( alpha.to(x_spatial.dtype) * x_spatial + (1.0 - alpha).to(x_spatial.dtype) * x_temporal ) return x