import gradio as gr import os import shutil import ffmpeg from datetime import datetime from pathlib import Path import numpy as np import cv2 import torch #import spaces from diffusers import AutoencoderKL, DDIMScheduler from einops import repeat from omegaconf import OmegaConf from PIL import Image from torchvision import transforms from transformers import CLIPVisionModelWithProjection from src.models.pose_guider import PoseGuider from src.models.unet_2d_condition import UNet2DConditionModel from src.models.unet_3d import UNet3DConditionModel from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline from src.utils.util import get_fps, read_frames, save_videos_grid, save_pil_imgs from src.audio_models.model import Audio2MeshModel from src.utils.audio_util import prepare_audio_feature from src.utils.mp_utils import LMKExtractor from src.utils.draw_util import FaceMeshVisualizer from src.utils.pose_util import project_points, project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix from src.utils.crop_face_single import crop_face from src.audio2vid import get_headpose_temp, smooth_pose_seq from src.utils.frame_interpolation import init_frame_interpolation_model, batch_images_interpolation_tool if torch.backends.mps.is_available(): #device = "mps" device = "cpu" elif torch.cuda.is_available(): device = "cuda" else: device = "cpu" config = OmegaConf.load('./configs/prompts/animation_audio.yaml') if config.weight_dtype == "fp16": weight_dtype = torch.float16 else: weight_dtype = torch.float32 if device == "cpu": weight_dtype = torch.float32 audio_infer_config = OmegaConf.load(config.audio_inference_config) # prepare model a2m_model = Audio2MeshModel(audio_infer_config['a2m_model']) a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt'], map_location="cpu"), strict=False) a2m_model.to(device).eval() vae = AutoencoderKL.from_pretrained( config.pretrained_vae_path, ).to(device, dtype=weight_dtype) reference_unet = UNet2DConditionModel.from_pretrained( config.pretrained_base_model_path, subfolder="unet", ).to(dtype=weight_dtype, device=device) inference_config_path = config.inference_config infer_config = OmegaConf.load(inference_config_path) denoising_unet = UNet3DConditionModel.from_pretrained_2d( config.pretrained_base_model_path, config.motion_module_path, subfolder="unet", unet_additional_kwargs=infer_config.unet_additional_kwargs, ).to(dtype=weight_dtype, device=device) pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device=device, dtype=weight_dtype) # not use cross attention image_enc = CLIPVisionModelWithProjection.from_pretrained( config.image_encoder_path ).to(dtype=weight_dtype, device=device) sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) scheduler = DDIMScheduler(**sched_kwargs) # load pretrained weights denoising_unet.load_state_dict( torch.load(config.denoising_unet_path, map_location="cpu"), strict=False, ) reference_unet.load_state_dict( torch.load(config.reference_unet_path, map_location="cpu"), ) pose_guider.load_state_dict( torch.load(config.pose_guider_path, map_location="cpu"), ) pipe = Pose2VideoPipeline( vae=vae, image_encoder=image_enc, reference_unet=reference_unet, denoising_unet=denoising_unet, pose_guider=pose_guider, scheduler=scheduler, ) pipe = pipe.to(device, dtype=weight_dtype) lmk_extractor = LMKExtractor() vis = FaceMeshVisualizer() frame_inter_model = init_frame_interpolation_model() #@spaces.GPU(duration=200) def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, length=150, seed=42): fps = 30 cfg = 3.5 generator = torch.manual_seed(seed) width, height = size, size date_str = datetime.now().strftime("%Y%m%d") time_str = datetime.now().strftime("%H%M") save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}" save_dir = Path(f"output/{date_str}/{save_dir_name}") save_dir.mkdir(exist_ok=True, parents=True) ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR) ref_image_np = crop_face(ref_image_np, lmk_extractor) if ref_image_np is None: return None, Image.fromarray(ref_img) ref_image_np = cv2.resize(ref_image_np, (size, size)) ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB)) face_result = lmk_extractor(ref_image_np) if face_result is None: return None, ref_image_pil lmks = face_result['lmks'].astype(np.float32) ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True) sample = prepare_audio_feature(input_audio, wav2vec_model_path=audio_infer_config['a2m_model']['model_path']) sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().to(device) sample['audio_feature'] = sample['audio_feature'].unsqueeze(0) # inference pred = a2m_model.infer(sample['audio_feature'], sample['seq_len']) pred = pred.squeeze().detach().cpu().numpy() pred = pred.reshape(pred.shape[0], -1, 3) pred = pred + face_result['lmks3d'] if headpose_video is not None: pose_seq = get_headpose_temp(headpose_video) else: pose_seq = np.load(config['pose_temp']) mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0) cycled_pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']] # project 3D mesh to 2D landmark projected_vertices = project_points(pred, face_result['trans_mat'], cycled_pose_seq, [height, width]) pose_images = [] for i, verts in enumerate(projected_vertices): lmk_img = vis.draw_landmarks((width, height), verts, normed=False) pose_images.append(lmk_img) pose_list = [] # pose_tensor_list = [] # pose_transform = transforms.Compose( # [transforms.Resize((height, width)), transforms.ToTensor()] # ) args_L = len(pose_images) if length==0 or length > len(pose_images) else length args_L = min(args_L, 180) for pose_image_np in pose_images[: args_L : 2]: # pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB)) # pose_tensor_list.append(pose_transform(pose_image_pil)) pose_image_np = cv2.resize(pose_image_np, (width, height)) pose_list.append(pose_image_np) pose_list = np.array(pose_list) video_length = len(pose_list) video = pipe( ref_image_pil, pose_list, ref_pose, width, height, video_length, steps, cfg, generator=generator, ).videos # save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4" # save_videos_grid( # video, # save_path, # n_rows=1, # fps=fps, # ) save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio" save_pil_imgs(video, save_path) save_path = batch_images_interpolation_tool(save_path, frame_inter_model, int(fps)) stream = ffmpeg.input(save_path) audio = ffmpeg.input(input_audio) ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run() os.remove(save_path) return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil #@spaces.GPU(duration=200) def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42): cfg = 3.5 generator = torch.manual_seed(seed) width, height = size, size date_str = datetime.now().strftime("%Y%m%d") time_str = datetime.now().strftime("%H%M") save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}" save_dir = Path(f"output/{date_str}/{save_dir_name}") save_dir.mkdir(exist_ok=True, parents=True) ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR) ref_image_np = crop_face(ref_image_np, lmk_extractor) if ref_image_np is None: return None, Image.fromarray(ref_img) ref_image_np = cv2.resize(ref_image_np, (size, size)) ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB)) face_result = lmk_extractor(ref_image_np) if face_result is None: return None, ref_image_pil lmks = face_result['lmks'].astype(np.float32) ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True) source_images = read_frames(source_video) src_fps = get_fps(source_video) pose_transform = transforms.Compose( [transforms.Resize((height, width)), transforms.ToTensor()] ) step = 1 if src_fps == 60: src_fps = 30 step = 2 pose_trans_list = [] verts_list = [] bs_list = [] src_tensor_list = [] args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step args_L = min(args_L, 180*step) for src_image_pil in source_images[: args_L : step*2]: src_tensor_list.append(pose_transform(src_image_pil)) src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR) frame_height, frame_width, _ = src_img_np.shape src_img_result = lmk_extractor(src_img_np) if src_img_result is None: break pose_trans_list.append(src_img_result['trans_mat']) verts_list.append(src_img_result['lmks3d']) bs_list.append(src_img_result['bs']) trans_mat_arr = np.array(pose_trans_list) verts_arr = np.array(verts_list) bs_arr = np.array(bs_list) min_bs_idx = np.argmin(bs_arr.sum(1)) # compute delta pose pose_arr = np.zeros([trans_mat_arr.shape[0], 6]) for i in range(pose_arr.shape[0]): euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source pose_arr[i, :3] = euler_angles pose_arr[i, 3:6] = translation_vector init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt) pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3) pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])] pose_mat_smooth = np.array(pose_mat_smooth) # face retarget verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d'] # project 3D mesh to 2D landmark projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width]) pose_list = [] for i, verts in enumerate(projected_vertices): lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False) pose_image_np = cv2.resize(lmk_img, (width, height)) pose_list.append(pose_image_np) pose_list = np.array(pose_list) video_length = len(pose_list) video = pipe( ref_image_pil, pose_list, ref_pose, width, height, video_length, steps, cfg, generator=generator, ).videos # save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4" # save_videos_grid( # video, # save_path, # n_rows=1, # fps=src_fps, # ) save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio" save_pil_imgs(video, save_path) save_path = batch_images_interpolation_tool(save_path, frame_inter_model, int(src_fps)) audio_output = f'{save_dir}/audio_from_video.aac' # extract audio try: ffmpeg.input(source_video).output(audio_output, acodec='copy').run() # merge audio and video stream = ffmpeg.input(save_path) audio = ffmpeg.input(audio_output) ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run() os.remove(save_path) os.remove(audio_output) except: shutil.move( save_path, save_path.replace('_noaudio.mp4', '.mp4') ) return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil ################# GUI ################ title = r"""

AniPortrait

""" description = r""" Official 🤗 Gradio demo for AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations.
""" tips = r""" When the video cannot be displayed, you can download the result video. """ with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) gr.Markdown(tips) with gr.Tab("Audio2video"): with gr.Row(): with gr.Column(): with gr.Row(): a2v_input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", editable=True, label="Input audio", interactive=True) a2v_ref_img = gr.Image(label="Upload reference image", sources="upload") a2v_headpose_video = gr.Video(label="Option: upload head pose reference video", sources="upload") with gr.Row(): if device == "cpu": a2v_size_slider = gr.Slider(minimum=256, maximum=1024, step=8, value=256, label="Video size (-W & -H)") else: a2v_size_slider = gr.Slider(minimum=256, maximum=1024, step=8, value=512, label="Video size (-W & -H)") a2v_step_slider = gr.Slider(minimum=5, maximum=50, step=1, value=20, label="Steps (--steps)") with gr.Row(): a2v_length = gr.Slider(minimum=0, maximum=180, step=1, value=60, label="Length (-L) (Set 0 to automatically calculate video length.)") a2v_seed = gr.Number(value=42, label="Seed (--seed)") a2v_botton = gr.Button("Generate", variant="primary") a2v_output_video = gr.PlayableVideo(label="Result", interactive=False) gr.Examples( examples=[ ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/Aragaki.png", None], ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/solo.png", None], ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"], ], inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video], ) with gr.Tab("Video2video"): with gr.Row(): with gr.Column(): with gr.Row(): v2v_ref_img = gr.Image(label="Upload reference image", sources="upload") v2v_source_video = gr.Video(label="Upload source video", sources="upload") with gr.Row(): if device == "cpu": v2v_size_slider = gr.Slider(minimum=256, maximum=1024, step=8, value=256, label="Video size (-W & -H)") else: v2v_size_slider = gr.Slider(minimum=256, maximum=1024, step=8, value=512, label="Video size (-W & -H)") v2v_step_slider = gr.Slider(minimum=5, maximum=50, step=1, value=20, label="Steps (--steps)") with gr.Row(): v2v_length = gr.Slider(minimum=0, maximum=180, step=1, value=60, label="Length (-L) (Set 0 to automatically calculate video length.)") v2v_seed = gr.Number(value=42, label="Seed (--seed)") v2v_botton = gr.Button("Generate", variant="primary") v2v_output_video = gr.PlayableVideo(label="Result", interactive=False) gr.Examples( examples=[ ["configs/inference/ref_images/Aragaki.png", "configs/inference/video/Aragaki_song.mp4"], ["configs/inference/ref_images/solo.png", "configs/inference/video/Aragaki_song.mp4"], ["configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"], ], inputs=[v2v_ref_img, v2v_source_video, a2v_headpose_video], ) a2v_botton.click( fn=audio2video, inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video, a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed], outputs=[a2v_output_video, a2v_ref_img] ) v2v_botton.click( fn=video2video, inputs=[v2v_ref_img, v2v_source_video, v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed], outputs=[v2v_output_video, v2v_ref_img] ) demo.launch()