import os import glob import tqdm import random import tensorboardX import librosa import librosa.filters from scipy import signal from os.path import basename import numpy as np import time import cv2 import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import trimesh import mcubes from rich.console import Console from torch_ema import ExponentialMovingAverage from packaging import version as pver import imageio import lpips def custom_meshgrid(*args): # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid if pver.parse(torch.__version__) < pver.parse('1.10'): return torch.meshgrid(*args) else: return torch.meshgrid(*args, indexing='ij') def blend_with_mask_cuda(src, dst, mask): src = src.permute(2, 0, 1) dst = dst.permute(2, 0, 1) mask = mask.unsqueeze(0) # Blending blended = src * mask + dst * (1 - mask) # Convert back to numpy and return return blended.permute(1, 2, 0).detach().cpu().numpy() def get_audio_features(features, att_mode, index): if att_mode == 0: return features[[index]] elif att_mode == 1: left = index - 8 pad_left = 0 if left < 0: pad_left = -left left = 0 auds = features[left:index] if pad_left > 0: # pad may be longer than auds, so do not use zeros_like auds = torch.cat([torch.zeros(pad_left, *auds.shape[1:], device=auds.device, dtype=auds.dtype), auds], dim=0) return auds elif att_mode == 2: left = index - 4 right = index + 4 pad_left = 0 pad_right = 0 if left < 0: pad_left = -left left = 0 if right > features.shape[0]: pad_right = right - features.shape[0] right = features.shape[0] auds = features[left:right] if pad_left > 0: auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0) if pad_right > 0: auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16] return auds else: raise NotImplementedError(f'wrong att_mode: {att_mode}') @torch.jit.script def linear_to_srgb(x): return torch.where(x < 0.0031308, 12.92 * x, 1.055 * x ** 0.41666 - 0.055) @torch.jit.script def srgb_to_linear(x): return torch.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4) # copied from pytorch3d def _angle_from_tan( axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool ) -> torch.Tensor: """ Extract the first or third Euler angle from the two members of the matrix which are positive constant times its sine and cosine. Args: axis: Axis label "X" or "Y or "Z" for the angle we are finding. other_axis: Axis label "X" or "Y or "Z" for the middle axis in the convention. data: Rotation matrices as tensor of shape (..., 3, 3). horizontal: Whether we are looking for the angle for the third axis, which means the relevant entries are in the same row of the rotation matrix. If not, they are in the same column. tait_bryan: Whether the first and third axes in the convention differ. Returns: Euler Angles in radians for each matrix in data as a tensor of shape (...). """ i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] if horizontal: i2, i1 = i1, i2 even = (axis + other_axis) in ["XY", "YZ", "ZX"] if horizontal == even: return torch.atan2(data[..., i1], data[..., i2]) if tait_bryan: return torch.atan2(-data[..., i2], data[..., i1]) return torch.atan2(data[..., i2], -data[..., i1]) def _index_from_letter(letter: str) -> int: if letter == "X": return 0 if letter == "Y": return 1 if letter == "Z": return 2 raise ValueError("letter must be either X, Y or Z.") def matrix_to_euler_angles(matrix: torch.Tensor, convention: str = 'XYZ') -> torch.Tensor: """ Convert rotations given as rotation matrices to Euler angles in radians. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). convention: Convention string of three uppercase letters. Returns: Euler angles in radians as tensor of shape (..., 3). """ # if len(convention) != 3: # raise ValueError("Convention must have 3 letters.") # if convention[1] in (convention[0], convention[2]): # raise ValueError(f"Invalid convention {convention}.") # for letter in convention: # if letter not in ("X", "Y", "Z"): # raise ValueError(f"Invalid letter {letter} in convention string.") # if matrix.size(-1) != 3 or matrix.size(-2) != 3: # raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") i0 = _index_from_letter(convention[0]) i2 = _index_from_letter(convention[2]) tait_bryan = i0 != i2 if tait_bryan: central_angle = torch.asin( matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) ) else: central_angle = torch.acos(matrix[..., i0, i0]) o = ( _angle_from_tan( convention[0], convention[1], matrix[..., i2], False, tait_bryan ), central_angle, _angle_from_tan( convention[2], convention[1], matrix[..., i0, :], True, tait_bryan ), ) return torch.stack(o, -1) @torch.cuda.amp.autocast(enabled=False) def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor: """ Return the rotation matrices for one of the rotations about an axis of which Euler angles describe, for each value of the angle given. Args: axis: Axis label "X" or "Y or "Z". angle: any shape tensor of Euler angles in radians Returns: Rotation matrices as tensor of shape (..., 3, 3). """ cos = torch.cos(angle) sin = torch.sin(angle) one = torch.ones_like(angle) zero = torch.zeros_like(angle) if axis == "X": R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) elif axis == "Y": R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) elif axis == "Z": R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) else: raise ValueError("letter must be either X, Y or Z.") return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) @torch.cuda.amp.autocast(enabled=False) def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str='XYZ') -> torch.Tensor: """ Convert rotations given as Euler angles in radians to rotation matrices. Args: euler_angles: Euler angles in radians as tensor of shape (..., 3). convention: Convention string of three uppercase letters from {"X", "Y", and "Z"}. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ # print(euler_angles, euler_angles.dtype) if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: raise ValueError("Invalid input euler angles.") if len(convention) != 3: raise ValueError("Convention must have 3 letters.") if convention[1] in (convention[0], convention[2]): raise ValueError(f"Invalid convention {convention}.") for letter in convention: if letter not in ("X", "Y", "Z"): raise ValueError(f"Invalid letter {letter} in convention string.") matrices = [ _axis_angle_rotation(c, e) for c, e in zip(convention, torch.unbind(euler_angles, -1)) ] return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2]) @torch.cuda.amp.autocast(enabled=False) def convert_poses(poses): # poses: [B, 4, 4] # return [B, 3], 4 rot, 3 trans out = torch.empty(poses.shape[0], 6, dtype=torch.float32, device=poses.device) out[:, :3] = matrix_to_euler_angles(poses[:, :3, :3]) out[:, 3:] = poses[:, :3, 3] return out @torch.cuda.amp.autocast(enabled=False) def get_bg_coords(H, W, device): X = torch.arange(H, device=device) / (H - 1) * 2 - 1 # in [-1, 1] Y = torch.arange(W, device=device) / (W - 1) * 2 - 1 # in [-1, 1] xs, ys = custom_meshgrid(X, Y) bg_coords = torch.cat([xs.reshape(-1, 1), ys.reshape(-1, 1)], dim=-1).unsqueeze(0) # [1, H*W, 2], in [-1, 1] return bg_coords @torch.cuda.amp.autocast(enabled=False) def get_rays(poses, intrinsics, H, W, N=-1, patch_size=1, rect=None): ''' get rays Args: poses: [B, 4, 4], cam2world intrinsics: [4] H, W, N: int Returns: rays_o, rays_d: [B, N, 3] inds: [B, N] ''' device = poses.device B = poses.shape[0] fx, fy, cx, cy = intrinsics if rect is not None: xmin, xmax, ymin, ymax = rect N = (xmax - xmin) * (ymax - ymin) i, j = custom_meshgrid(torch.linspace(0, W-1, W, device=device), torch.linspace(0, H-1, H, device=device)) # float i = i.t().reshape([1, H*W]).expand([B, H*W]) + 0.5 j = j.t().reshape([1, H*W]).expand([B, H*W]) + 0.5 results = {} if N > 0: N = min(N, H*W) if patch_size > 1: # random sample left-top cores. # NOTE: this impl will lead to less sampling on the image corner pixels... but I don't have other ideas. num_patch = N // (patch_size ** 2) inds_x = torch.randint(0, H - patch_size, size=[num_patch], device=device) inds_y = torch.randint(0, W - patch_size, size=[num_patch], device=device) inds = torch.stack([inds_x, inds_y], dim=-1) # [np, 2] # all_inds = torch.randperm((H - patch_size + 1) * (W - patch_size + 1), device=device)[:num_patch] # all_inds, _ = torch.sort(all_inds) # # inds_x = all_inds // (W - patch_size) # inds_y = all_inds % (W - patch_size) # inds = torch.stack([inds_x, inds_y], dim=-1) # [np, 2] # create meshgrid for each patch pi, pj = custom_meshgrid(torch.arange(patch_size, device=device), torch.arange(patch_size, device=device)) offsets = torch.stack([pi.reshape(-1), pj.reshape(-1)], dim=-1) # [p^2, 2] inds = inds.unsqueeze(1) + offsets.unsqueeze(0) # [np, p^2, 2] inds = inds.view(-1, 2) # [N, 2] inds = inds[:, 0] * W + inds[:, 1] # [N], flatten inds = inds.expand([B, N]) # only get rays in the specified rect elif rect is not None: # assert B == 1 mask = torch.zeros(H, W, dtype=torch.bool, device=device) xmin, xmax, ymin, ymax = rect mask[xmin:xmax, ymin:ymax] = 1 inds = torch.where(mask.view(-1))[0] # [nzn] inds = inds.unsqueeze(0) # [1, N] else: inds = torch.randint(0, H*W, size=[N], device=device) # may duplicate inds = inds.expand([B, N]) # inds = torch.randperm(H * W, device=device)[:N] # inds, _ = torch.sort(inds) # inds = inds.expand([B, N]) i = torch.gather(i, -1, inds) j = torch.gather(j, -1, inds) else: inds = torch.arange(H*W, device=device).expand([B, H*W]) results['i'] = i results['j'] = j results['inds'] = inds zs = torch.ones_like(i) xs = (i - cx) / fx * zs ys = (j - cy) / fy * zs directions = torch.stack((xs, ys, zs), dim=-1) directions = directions / torch.norm(directions, dim=-1, keepdim=True) rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3) rays_o = poses[..., :3, 3] # [B, 3] rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3] results['rays_o'] = rays_o results['rays_d'] = rays_d return results def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) #torch.backends.cudnn.deterministic = True #torch.backends.cudnn.benchmark = True def torch_vis_2d(x, renormalize=False): # x: [3, H, W] or [1, H, W] or [H, W] import matplotlib.pyplot as plt import numpy as np import torch if isinstance(x, torch.Tensor): if len(x.shape) == 3: x = x.permute(1,2,0).squeeze() x = x.detach().cpu().numpy() print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}') x = x.astype(np.float32) # renormalize if renormalize: x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8) plt.imshow(x) plt.show() def extract_fields(bound_min, bound_max, resolution, query_func, S=128): X = torch.linspace(bound_min[0], bound_max[0], resolution).split(S) Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(S) Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(S) u = np.zeros([resolution, resolution, resolution], dtype=np.float32) with torch.no_grad(): for xi, xs in enumerate(X): for yi, ys in enumerate(Y): for zi, zs in enumerate(Z): xx, yy, zz = custom_meshgrid(xs, ys, zs) pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [S, 3] val = query_func(pts).reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy() # [S, 1] --> [x, y, z] u[xi * S: xi * S + len(xs), yi * S: yi * S + len(ys), zi * S: zi * S + len(zs)] = val return u def extract_geometry(bound_min, bound_max, resolution, threshold, query_func): #print('threshold: {}'.format(threshold)) u = extract_fields(bound_min, bound_max, resolution, query_func) #print(u.shape, u.max(), u.min(), np.percentile(u, 50)) vertices, triangles = mcubes.marching_cubes(u, threshold) b_max_np = bound_max.detach().cpu().numpy() b_min_np = bound_min.detach().cpu().numpy() vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :] return vertices, triangles def ssim_1d_loss(pred, true, C1=1e-4, C2=9e-4): """ Compute 1D SSIM loss between two signals. Args: pred: predicted signal, [1, 512*512, 3] true: ground truth signal, [1, 512*512, 3] Returns: ssim_val: ssim index of two input signals """ if pred.size() != true.size(): raise ValueError(f'Expected input size ({pred.size()}) to match target size ({true.size()}).') mu1 = pred.mean(dim=1, keepdim=True) mu2 = true.mean(dim=1, keepdim=True) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = (pred * pred).mean(dim=1, keepdim=True) - mu1_sq sigma2_sq = (true * true).mean(dim=1, keepdim=True) - mu2_sq sigma12 = (pred * true).mean(dim=1, keepdim=True) - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) ssim_val = ssim_map.mean() return ssim_val class PSNRMeter: def __init__(self): self.V = 0 self.N = 0 def clear(self): self.V = 0 self.N = 0 def prepare_inputs(self, *inputs): outputs = [] for i, inp in enumerate(inputs): if torch.is_tensor(inp): inp = inp.detach().cpu().numpy() outputs.append(inp) return outputs def update(self, preds, truths): preds, truths = self.prepare_inputs(preds, truths) # [B, N, 3] or [B, H, W, 3], range in [0, 1] # simplified since max_pixel_value is 1 here. psnr = -10 * np.log10(np.mean((preds - truths) ** 2)) self.V += psnr self.N += 1 def measure(self): return self.V / self.N def write(self, writer, global_step, prefix=""): writer.add_scalar(os.path.join(prefix, "PSNR"), self.measure(), global_step) def report(self): return f'PSNR = {self.measure():.6f}' class LPIPSMeter: def __init__(self, net='alex', device=None): self.V = 0 self.N = 0 self.net = net self.device = device if device is not None else torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.fn = lpips.LPIPS(net=net).eval().to(self.device) def clear(self): self.V = 0 self.N = 0 def prepare_inputs(self, *inputs): outputs = [] for i, inp in enumerate(inputs): inp = inp.permute(0, 3, 1, 2).contiguous() # [B, 3, H, W] inp = inp.to(self.device) outputs.append(inp) return outputs def update(self, preds, truths): preds, truths = self.prepare_inputs(preds, truths) # [B, H, W, 3] --> [B, 3, H, W], range in [0, 1] v = self.fn(truths, preds, normalize=True).item() # normalize=True: [0, 1] to [-1, 1] self.V += v self.N += 1 def measure(self): return self.V / self.N def write(self, writer, global_step, prefix=""): writer.add_scalar(os.path.join(prefix, f"LPIPS ({self.net})"), self.measure(), global_step) def report(self): return f'LPIPS ({self.net}) = {self.measure():.6f}' class LMDMeter: def __init__(self, backend='dlib', region='mouth'): self.backend = backend self.region = region # mouth or face if self.backend == 'dlib': import dlib # load checkpoint manually self.predictor_path = './shape_predictor_68_face_landmarks.dat' if not os.path.exists(self.predictor_path): raise FileNotFoundError('Please download dlib checkpoint from http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2') self.detector = dlib.get_frontal_face_detector() self.predictor = dlib.shape_predictor(self.predictor_path) else: import face_alignment try: self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) except: self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False) self.V = 0 self.N = 0 def get_landmarks(self, img): if self.backend == 'dlib': dets = self.detector(img, 1) for det in dets: shape = self.predictor(img, det) # ref: https://github.com/PyImageSearch/imutils/blob/c12f15391fcc945d0d644b85194b8c044a392e0a/imutils/face_utils/helpers.py lms = np.zeros((68, 2), dtype=np.int32) for i in range(0, 68): lms[i, 0] = shape.part(i).x lms[i, 1] = shape.part(i).y break else: lms = self.predictor.get_landmarks(img)[-1] # self.vis_landmarks(img, lms) lms = lms.astype(np.float32) return lms def vis_landmarks(self, img, lms): plt.imshow(img) plt.plot(lms[48:68, 0], lms[48:68, 1], marker='o', markersize=1, linestyle='-', lw=2) plt.show() def clear(self): self.V = 0 self.N = 0 def prepare_inputs(self, *inputs): outputs = [] for i, inp in enumerate(inputs): inp = inp.detach().cpu().numpy() inp = (inp * 255).astype(np.uint8) outputs.append(inp) return outputs def update(self, preds, truths): # assert B == 1 preds, truths = self.prepare_inputs(preds[0], truths[0]) # [H, W, 3] numpy array # get lms lms_pred = self.get_landmarks(preds) lms_truth = self.get_landmarks(truths) if self.region == 'mouth': lms_pred = lms_pred[48:68] lms_truth = lms_truth[48:68] # avarage lms_pred = lms_pred - lms_pred.mean(0) lms_truth = lms_truth - lms_truth.mean(0) # distance dist = np.sqrt(((lms_pred - lms_truth) ** 2).sum(1)).mean(0) self.V += dist self.N += 1 def measure(self): return self.V / self.N def write(self, writer, global_step, prefix=""): writer.add_scalar(os.path.join(prefix, f"LMD ({self.backend})"), self.measure(), global_step) def report(self): return f'LMD ({self.backend}) = {self.measure():.6f}' class Trainer(object): def __init__(self, name, # name of this experiment opt, # extra conf model, # network criterion=None, # loss function, if None, assume inline implementation in train_step optimizer=None, # optimizer ema_decay=None, # if use EMA, set the decay ema_update_interval=1000, # update ema per $ training steps. lr_scheduler=None, # scheduler metrics=[], # metrics for evaluation, if None, use val_loss to measure performance, else use the first metric. local_rank=0, # which GPU am I world_size=1, # total num of GPUs device=None, # device to use, usually setting to None is OK. (auto choose device) mute=False, # whether to mute all print fp16=False, # amp optimize level eval_interval=1, # eval once every $ epoch max_keep_ckpt=50, # max num of saved ckpts in disk workspace='workspace', # workspace to save logs & ckpts best_mode='min', # the smaller/larger result, the better use_loss_as_metric=True, # use loss as the first metric report_metric_at_train=False, # also report metrics at training use_checkpoint="latest", # which ckpt to use at init time use_tensorboardX=True, # whether to use tensorboard for logging scheduler_update_every_step=False, # whether to call scheduler.step() after every train step ): self.name = name self.opt = opt self.mute = mute self.metrics = metrics self.local_rank = local_rank self.world_size = world_size self.workspace = workspace self.ema_decay = ema_decay self.ema_update_interval = ema_update_interval self.fp16 = fp16 self.best_mode = best_mode self.use_loss_as_metric = use_loss_as_metric self.report_metric_at_train = report_metric_at_train self.max_keep_ckpt = max_keep_ckpt self.eval_interval = eval_interval self.use_checkpoint = use_checkpoint self.use_tensorboardX = use_tensorboardX self.flip_finetune_lips = self.opt.finetune_lips self.flip_init_lips = self.opt.init_lips self.time_stamp = time.strftime("%Y-%m-%d_%H-%M-%S") self.scheduler_update_every_step = scheduler_update_every_step self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu') self.console = Console() model.to(self.device) if self.world_size > 1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank]) self.model = model if isinstance(criterion, nn.Module): criterion.to(self.device) self.criterion = criterion self.criterionL1 = nn.L1Loss().to(self.device) if optimizer is None: self.optimizer = optim.Adam(self.model.parameters(), lr=0.001, weight_decay=5e-4) # naive adam else: self.optimizer = optimizer(self.model) if lr_scheduler is None: self.lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: 1) # fake scheduler else: self.lr_scheduler = lr_scheduler(self.optimizer) if ema_decay is not None: self.ema = ExponentialMovingAverage(self.model.parameters(), decay=ema_decay) else: self.ema = None self.scaler = torch.cuda.amp.GradScaler(enabled=self.fp16) # optionally use LPIPS loss for patch-based training if self.opt.patch_size > 1 or self.opt.finetune_lips or True: import lpips # self.criterion_lpips_vgg = lpips.LPIPS(net='vgg').to(self.device) self.criterion_lpips_alex = lpips.LPIPS(net='alex').to(self.device) # variable init self.epoch = 0 self.global_step = 0 self.local_step = 0 self.stats = { "loss": [], "valid_loss": [], "results": [], # metrics[0], or valid_loss "checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt "best_result": None, } # auto fix if len(metrics) == 0 or self.use_loss_as_metric: self.best_mode = 'min' # workspace prepare self.log_ptr = None if self.workspace is not None: os.makedirs(self.workspace, exist_ok=True) self.log_path = os.path.join(workspace, f"log_{self.name}.txt") self.log_ptr = open(self.log_path, "a+") self.ckpt_path = os.path.join(self.workspace, 'checkpoints') self.best_path = f"{self.ckpt_path}/{self.name}.pth" os.makedirs(self.ckpt_path, exist_ok=True) self.log(f'[INFO] Trainer: {self.name} | {self.time_stamp} | {self.device} | {"fp16" if self.fp16 else "fp32"} | {self.workspace}') self.log(f'[INFO] #parameters: {sum([p.numel() for p in model.parameters() if p.requires_grad])}') if self.workspace is not None: if self.use_checkpoint == "scratch": self.log("[INFO] Training from scratch ...") elif self.use_checkpoint == "latest": self.log("[INFO] Loading latest checkpoint ...") self.load_checkpoint() elif self.use_checkpoint == "latest_model": self.log("[INFO] Loading latest checkpoint (model only)...") self.load_checkpoint(model_only=True) elif self.use_checkpoint == "best": if os.path.exists(self.best_path): self.log("[INFO] Loading best checkpoint ...") self.load_checkpoint(self.best_path) else: self.log(f"[INFO] {self.best_path} not found, loading latest ...") self.load_checkpoint() else: # path to ckpt self.log(f"[INFO] Loading {self.use_checkpoint} ...") self.load_checkpoint(self.use_checkpoint) def __del__(self): if self.log_ptr: self.log_ptr.close() def log(self, *args, **kwargs): if self.local_rank == 0: if not self.mute: #print(*args) self.console.print(*args, **kwargs) if self.log_ptr: print(*args, file=self.log_ptr) self.log_ptr.flush() # write immediately to file ### ------------------------------ def train_step(self, data): rays_o = data['rays_o'] # [B, N, 3] rays_d = data['rays_d'] # [B, N, 3] bg_coords = data['bg_coords'] # [1, N, 2] poses = data['poses'] # [B, 6] face_mask = data['face_mask'] # [B, N] upface_mask = data['upface_mask'] # [B, N] lowface_mask = data['lowface_mask'] # [B, N] eye_mask = data['eye_mask'] # [B, N] lhalf_mask = data['lhalf_mask'] eye = data['eye'] # [B, 1] auds = data['auds'] # [B, 29, 16] index = data['index'] # [B] loss_perception =0 if not self.opt.torso: rgb = data['images'] # [B, N, 3] else: rgb = data['bg_torso_color'] B, N, C = rgb.shape if self.opt.color_space == 'linear': rgb[..., :3] = srgb_to_linear(rgb[..., :3]) bg_color = data['bg_color'] if not self.opt.torso: outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=False, bg_color=bg_color, perturb=True, force_all_rays=False if (self.opt.patch_size <= 1 and not self.opt.train_camera) else True, **vars(self.opt)) else: outputs = self.model.render_torso(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=False, bg_color=bg_color, perturb=True, force_all_rays=False if (self.opt.patch_size <= 1 and not self.opt.train_camera) else True, **vars(self.opt)) if not self.opt.torso: pred_rgb = outputs['image'] else: pred_rgb = outputs['torso_color'] # loss factor step_factor = min(self.global_step / self.opt.iters, 1.0) # MSE loss loss = self.criterion(pred_rgb, rgb).mean(-1) # [B, N, 3] --> [B, N] if self.opt.torso: loss = loss.mean() loss += ((1 - self.model.anchor_points[:, 3])**2).mean() return pred_rgb, rgb, loss if self.opt.unc_loss and not self.flip_finetune_lips: alpha = 0.2 uncertainty = outputs['uncertainty'] # [N], abs sum beta = uncertainty + 1 unc_weight = F.softmax(uncertainty, dim=-1) * N loss *= alpha + (1-alpha)*((1 - step_factor) + step_factor * unc_weight.detach()).clamp(0, 10) beta = uncertainty + 1 norm_rgb = torch.norm((pred_rgb - rgb), dim=-1).detach() loss_u = norm_rgb / (2*beta**2) + (torch.log(beta)**2) / 2 loss_u *= face_mask.view(-1) loss += 0.01 * step_factor * loss_u loss_static_uncertainty = (uncertainty * (~face_mask.view(-1))) loss += 0.01 * step_factor * loss_static_uncertainty # patch-based rendering if self.opt.patch_size > 1 and not self.opt.finetune_lips: rgb = rgb.view(-1, self.opt.patch_size, self.opt.patch_size, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1 pred_rgb = pred_rgb.view(-1, self.opt.patch_size, self.opt.patch_size, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1 loss_lpips = self.criterion_lpips_alex(pred_rgb, rgb) loss = loss + 0.1 * loss_lpips # lips finetune if self.opt.finetune_lips: xmin, xmax, ymin, ymax = data['rect'] rgb = rgb.view(-1, xmax - xmin, ymax - ymin, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1 pred_rgb = pred_rgb.view(-1, xmax - xmin, ymax - ymin, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1 padding_h = max(0, (32 - rgb.shape[-2] + 1) // 2) padding_w = max(0, (32 - rgb.shape[-1] + 1) // 2) if padding_w or padding_h: rgb = torch.nn.functional.pad(rgb, (padding_w, padding_w, padding_h, padding_h)) pred_rgb = torch.nn.functional.pad(pred_rgb, (padding_w, padding_w, padding_h, padding_h)) loss = loss + 0.01 * self.criterion_lpips_alex(pred_rgb, rgb) # flip every step... if finetune lips if self.flip_finetune_lips: self.opt.finetune_lips = not self.opt.finetune_lips loss = loss.mean() if self.opt.patch_size > 1 and not self.opt.finetune_lips: if self.opt.pyramid_loss: loss = loss + 0.1 * loss_perception # print('loss', loss.item()) # weights_sum loss # entropy to encourage weights_sum to be 0 or 1. if self.opt.torso: alphas = outputs['torso_alpha'].clamp(1e-5, 1 - 1e-5) # alphas = alphas ** 2 # skewed entropy, favors 0 over 1 loss_ws = - alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas) loss = loss + 1e-4 * loss_ws.mean() else: alphas = outputs['weights_sum'].clamp(1e-5, 1 - 1e-5) loss_ws = - alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas) loss = loss + 1e-4 * loss_ws.mean() # aud att loss (regions out of face should be static) if self.opt.amb_aud_loss and not self.opt.torso: ambient_aud = outputs['ambient_aud'] loss_amb_aud = (ambient_aud * (~lowface_mask.view(-1))).mean() # gradually increase it lambda_amb = step_factor * self.opt.lambda_amb loss += lambda_amb * loss_amb_aud # eye att loss if self.opt.amb_eye_loss and not self.opt.torso: ambient_eye = outputs['ambient_eye'] loss_cross = ((ambient_eye)*(lowface_mask.view(-1))).mean() lambda_amb = step_factor * self.opt.lambda_amb loss += lambda_amb * loss_cross # regularize if self.global_step % 16 == 0 and not self.flip_finetune_lips: xyzs, dirs, enc_a, ind_code, eye = outputs['rays'] xyz_delta = (torch.rand(size=xyzs.shape, dtype=xyzs.dtype, device=xyzs.device) * 2 - 1) * 1e-3 with torch.no_grad(): sigmas_raw, rgbs_raw, ambient_aud_raw, ambient_eye_raw, unc_raw = self.model(xyzs, dirs, enc_a.detach(), ind_code.detach(), eye) sigmas_reg, rgbs_reg, ambient_aud_reg, ambient_eye_reg, unc_reg = self.model(xyzs+xyz_delta, dirs, enc_a.detach(), ind_code.detach(), eye) lambda_reg = step_factor * 1e-5 reg_loss = 0 if self.opt.unc_loss: reg_loss += self.criterion(unc_raw, unc_reg).mean() if self.opt.amb_aud_loss: reg_loss += self.criterion(ambient_aud_raw, ambient_aud_reg).mean() if self.opt.amb_eye_loss: reg_loss += self.criterion(ambient_eye_raw, ambient_eye_reg).mean() loss += reg_loss * lambda_reg return pred_rgb, rgb, loss def eval_step(self, data): rays_o = data['rays_o'] # [B, N, 3] rays_d = data['rays_d'] # [B, N, 3] bg_coords = data['bg_coords'] # [1, N, 2] poses = data['poses'] # [B, 7] images = data['images'] # [B, H, W, 3/4] if self.opt.portrait: images = data['bg_gt_images'] auds = data['auds'] index = data['index'] # [B] eye = data['eye'] # [B, 1] B, H, W, C = images.shape if self.opt.color_space == 'linear': images[..., :3] = srgb_to_linear(images[..., :3]) # eval with fixed background color # bg_color = 1 bg_color = data['bg_color'] outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=True, bg_color=bg_color, perturb=False, **vars(self.opt)) pred_rgb = outputs['image'].reshape(B, H, W, 3) pred_depth = outputs['depth'].reshape(B, H, W) pred_ambient_aud = outputs['ambient_aud'].reshape(B, H, W) pred_ambient_eye = outputs['ambient_eye'].reshape(B, H, W) pred_uncertainty = outputs['uncertainty'].reshape(B, H, W) loss_raw = self.criterion(pred_rgb, images) loss = loss_raw.mean() return pred_rgb, pred_depth, pred_ambient_aud, pred_ambient_eye, pred_uncertainty, images, loss, loss_raw # moved out bg_color and perturb for more flexible control... def test_step(self, data, bg_color=None, perturb=False): rays_o = data['rays_o'] # [B, N, 3] rays_d = data['rays_d'] # [B, N, 3] bg_coords = data['bg_coords'] # [1, N, 2] poses = data['poses'] # [B, 7] auds = data['auds'] # [B, 29, 16] index = data['index'] H, W = data['H'], data['W'] # allow using a fixed eye area (avoid eye blink) at test if self.opt.exp_eye and self.opt.fix_eye >= 0: eye = torch.FloatTensor([self.opt.fix_eye]).view(1, 1).to(self.device) else: eye = data['eye'] # [B, 1] if bg_color is not None: bg_color = bg_color.to(self.device) else: bg_color = data['bg_color'] self.model.testing = True outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=True, bg_color=bg_color, perturb=perturb, **vars(self.opt)) self.model.testing = False pred_rgb = outputs['image'].reshape(-1, H, W, 3) pred_depth = outputs['depth'].reshape(-1, H, W) return pred_rgb, pred_depth def save_mesh(self, save_path=None, resolution=256, threshold=10): if save_path is None: save_path = os.path.join(self.workspace, 'meshes', f'{self.name}_{self.epoch}.ply') self.log(f"==> Saving mesh to {save_path}") os.makedirs(os.path.dirname(save_path), exist_ok=True) def query_func(pts): with torch.no_grad(): with torch.cuda.amp.autocast(enabled=self.fp16): sigma = self.model.density(pts.to(self.device))['sigma'] return sigma vertices, triangles = extract_geometry(self.model.aabb_infer[:3], self.model.aabb_infer[3:], resolution=resolution, threshold=threshold, query_func=query_func) mesh = trimesh.Trimesh(vertices, triangles, process=False) # important, process=True leads to seg fault... mesh.export(save_path) self.log(f"==> Finished saving mesh.") ### ------------------------------ def train(self, train_loader, valid_loader, max_epochs): if self.use_tensorboardX and self.local_rank == 0: self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name)) # mark untrained region (i.e., not covered by any camera from the training dataset) if self.model.cuda_ray: self.model.mark_untrained_grid(train_loader._data.poses, train_loader._data.intrinsics) for epoch in range(self.epoch + 1, max_epochs + 1): self.epoch = epoch self.train_one_epoch(train_loader) if self.workspace is not None and self.local_rank == 0: self.save_checkpoint(full=True, best=False) if self.epoch % self.eval_interval == 0: self.evaluate_one_epoch(valid_loader) self.save_checkpoint(full=False, best=True) if self.use_tensorboardX and self.local_rank == 0: self.writer.close() def evaluate(self, loader, name=None): self.use_tensorboardX, use_tensorboardX = False, self.use_tensorboardX self.evaluate_one_epoch(loader, name) self.use_tensorboardX = use_tensorboardX # Function to blend two images with a mask def test(self, loader, save_path=None, name=None, write_image=False): if save_path is None: save_path = os.path.join(self.workspace, 'results') if name is None: name = f'{self.name}_ep{self.epoch:04d}' os.makedirs(save_path, exist_ok=True) self.log(f"==> Start Test, save results to {save_path}") pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') self.model.eval() all_preds = [] all_preds_depth = [] with torch.no_grad(): for i, data in enumerate(loader): with torch.cuda.amp.autocast(enabled=self.fp16): preds, preds_depth = self.test_step(data) path = os.path.join(save_path, f'{name}_{i:04d}_rgb.png') path_depth = os.path.join(save_path, f'{name}_{i:04d}_depth.png') #self.log(f"[INFO] saving test image to {path}") if self.opt.color_space == 'linear': preds = linear_to_srgb(preds) if self.opt.portrait: pred = blend_with_mask_cuda(preds[0], data["bg_gt_images"].squeeze(0), data["bg_face_mask"].squeeze(0)) pred = (pred * 255).astype(np.uint8) else: pred = preds[0].detach().cpu().numpy() pred = (pred * 255).astype(np.uint8) pred_depth = preds_depth[0].detach().cpu().numpy() pred_depth = (pred_depth * 255).astype(np.uint8) if write_image: imageio.imwrite(path, pred) imageio.imwrite(path_depth, pred_depth) all_preds.append(pred) all_preds_depth.append(pred_depth) pbar.update(loader.batch_size) # write video all_preds = np.stack(all_preds, axis=0) all_preds_depth = np.stack(all_preds_depth, axis=0) imageio.mimwrite(os.path.join(save_path, f'{name}.mp4'), all_preds, fps=25, quality=8, macro_block_size=1) imageio.mimwrite(os.path.join(save_path, f'{name}_depth.mp4'), all_preds_depth, fps=25, quality=8, macro_block_size=1) if self.opt.aud != '' and self.opt.asr_model == 'ave': os.system(f'ffmpeg -i {os.path.join(save_path, f"{name}.mp4")} -i {self.opt.aud} -strict -2 {os.path.join(save_path, f"{name}_audio.mp4")} -y') self.log(f"==> Finished Test.") # [GUI] just train for 16 steps, without any other overhead that may slow down rendering. def train_gui(self, train_loader, step=16): self.model.train() total_loss = torch.tensor([0], dtype=torch.float32, device=self.device) loader = iter(train_loader) # mark untrained grid if self.global_step == 0: self.model.mark_untrained_grid(train_loader._data.poses, train_loader._data.intrinsics) for _ in range(step): # mimic an infinite loop dataloader (in case the total dataset is smaller than step) try: data = next(loader) except StopIteration: loader = iter(train_loader) data = next(loader) # update grid every 16 steps if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0: with torch.cuda.amp.autocast(enabled=self.fp16): self.model.update_extra_state() self.global_step += 1 self.optimizer.zero_grad() with torch.cuda.amp.autocast(enabled=self.fp16): preds, truths, loss = self.train_step(data) self.scaler.scale(loss).backward() self.scaler.step(self.optimizer) self.scaler.update() if self.scheduler_update_every_step: self.lr_scheduler.step() total_loss += loss.detach() if self.ema is not None and self.global_step % self.ema_update_interval == 0: self.ema.update() average_loss = total_loss.item() / step if not self.scheduler_update_every_step: if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): self.lr_scheduler.step(average_loss) else: self.lr_scheduler.step() outputs = { 'loss': average_loss, 'lr': self.optimizer.param_groups[0]['lr'], } return outputs # [GUI] test on a single image def test_gui(self, pose, intrinsics, W, H, auds, eye=None, index=0, bg_color=None, spp=1, downscale=1): # render resolution (may need downscale to for better frame rate) rH = int(H * downscale) rW = int(W * downscale) intrinsics = intrinsics * downscale if auds is not None: auds = auds.to(self.device) pose = torch.from_numpy(pose).unsqueeze(0).to(self.device) rays = get_rays(pose, intrinsics, rH, rW, -1) bg_coords = get_bg_coords(rH, rW, self.device) if eye is not None: eye = torch.FloatTensor([eye]).view(1, 1).to(self.device) data = { 'rays_o': rays['rays_o'], 'rays_d': rays['rays_d'], 'H': rH, 'W': rW, 'auds': auds, 'index': [index], # support choosing index for individual codes 'eye': eye, 'poses': pose, 'bg_coords': bg_coords, } self.model.eval() if self.ema is not None: self.ema.store() self.ema.copy_to() with torch.no_grad(): with torch.cuda.amp.autocast(enabled=self.fp16): # here spp is used as perturb random seed! # face: do not perturb for the first spp, else lead to scatters. preds, preds_depth = self.test_step(data, bg_color=bg_color, perturb=False if spp == 1 else spp) if self.ema is not None: self.ema.restore() # interpolation to the original resolution if downscale != 1: # TODO: have to permute twice with torch... preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='bilinear').permute(0, 2, 3, 1).contiguous() preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1) if self.opt.color_space == 'linear': preds = linear_to_srgb(preds) pred = preds[0].detach().cpu().numpy() pred_depth = preds_depth[0].detach().cpu().numpy() outputs = { 'image': pred, 'depth': pred_depth, } return outputs # [GUI] test with provided data def test_gui_with_data(self, data, W, H): self.model.eval() if self.ema is not None: self.ema.store() self.ema.copy_to() with torch.no_grad(): with torch.cuda.amp.autocast(enabled=self.fp16): # here spp is used as perturb random seed! # face: do not perturb for the first spp, else lead to scatters. preds, preds_depth = self.test_step(data, perturb=False) if self.ema is not None: self.ema.restore() if self.opt.color_space == 'linear': preds = linear_to_srgb(preds) # the H/W in data may be differnt to GUI, so we still need to resize... preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='bilinear').permute(0, 2, 3, 1).contiguous() preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1) pred = preds[0].detach().cpu().numpy() pred_depth = preds_depth[0].detach().cpu().numpy() outputs = { 'image': pred, 'depth': pred_depth, } return outputs def train_one_epoch(self, loader): self.log(f"==> Start Training Epoch {self.epoch}, lr={self.optimizer.param_groups[0]['lr']:.6f} ...") total_loss = 0 if self.local_rank == 0 and self.report_metric_at_train: for metric in self.metrics: metric.clear() self.model.train() # distributedSampler: must call set_epoch() to shuffle indices across multiple epochs # ref: https://pytorch.org/docs/stable/data.html if self.world_size > 1: loader.sampler.set_epoch(self.epoch) if self.local_rank == 0: pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, mininterval=1, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') self.local_step = 0 for data in loader: # update grid every 16 steps if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0: with torch.cuda.amp.autocast(enabled=self.fp16): self.model.update_extra_state() self.local_step += 1 self.global_step += 1 self.optimizer.zero_grad() with torch.cuda.amp.autocast(enabled=self.fp16): preds, truths, loss = self.train_step(data) self.scaler.scale(loss).backward() self.scaler.step(self.optimizer) self.scaler.update() if self.scheduler_update_every_step: self.lr_scheduler.step() loss_val = loss.item() total_loss += loss_val if self.ema is not None and self.global_step % self.ema_update_interval == 0: self.ema.update() if self.local_rank == 0: if self.report_metric_at_train: for metric in self.metrics: metric.update(preds, truths) if self.use_tensorboardX: self.writer.add_scalar("train/loss", loss_val, self.global_step) self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]['lr'], self.global_step) if self.scheduler_update_every_step: pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f}), lr={self.optimizer.param_groups[0]['lr']:.6f}") else: pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})") pbar.update(loader.batch_size) average_loss = total_loss / self.local_step self.stats["loss"].append(average_loss) if self.local_rank == 0: pbar.close() if self.report_metric_at_train: for metric in self.metrics: self.log(metric.report(), style="red") if self.use_tensorboardX: metric.write(self.writer, self.epoch, prefix="train") metric.clear() if not self.scheduler_update_every_step: if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): self.lr_scheduler.step(average_loss) else: self.lr_scheduler.step() self.log(f"loss={average_loss:.4f}") self.log(f"==> Finished Epoch {self.epoch}.") def evaluate_one_epoch(self, loader, name=None): self.log(f"++> Evaluate at epoch {self.epoch} ...") if name is None: name = f'{self.name}_ep{self.epoch:04d}' total_loss = 0 if self.local_rank == 0: for metric in self.metrics: metric.clear() self.model.eval() if self.ema is not None: self.ema.store() self.ema.copy_to() if self.local_rank == 0: pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') with torch.no_grad(): self.local_step = 0 for data in loader: self.local_step += 1 with torch.cuda.amp.autocast(enabled=self.fp16): preds, preds_depth, pred_ambient_aud, pred_ambient_eye, pred_uncertainty, truths, loss, loss_raw = self.eval_step(data) loss_val = loss.item() total_loss += loss_val # only rank = 0 will perform evaluation. if self.local_rank == 0: # save image save_path = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_rgb.png') save_path_depth = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_depth.png') save_path_ambient_aud = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_aud.png') save_path_ambient_eye = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_eye.png') save_path_uncertainty = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_uncertainty.png') os.makedirs(os.path.dirname(save_path), exist_ok=True) if self.opt.color_space == 'linear': preds = linear_to_srgb(preds) if self.opt.portrait: pred = blend_with_mask_cuda(preds[0], data["bg_gt_images"].squeeze(0),data["bg_face_mask"].squeeze(0)) preds = torch.from_numpy(pred).unsqueeze(0).to(self.device).float() else: pred = preds[0].detach().cpu().numpy() pred_depth = preds_depth[0].detach().cpu().numpy() for metric in self.metrics: metric.update(preds, truths) # loss_raw = loss_raw[0].mean(-1).detach().cpu().numpy() # loss_raw = (loss_raw - np.min(loss_raw)) / (np.max(loss_raw) - np.min(loss_raw)) pred_ambient_aud = pred_ambient_aud[0].detach().cpu().numpy() pred_ambient_aud /= np.max(pred_ambient_aud) pred_ambient_eye = pred_ambient_eye[0].detach().cpu().numpy() pred_ambient_eye /= np.max(pred_ambient_eye) # pred_ambient = pred_ambient / 16 # print(pred_ambient.shape) pred_uncertainty = pred_uncertainty[0].detach().cpu().numpy() # pred_uncertainty = (pred_uncertainty - np.min(pred_uncertainty)) / (np.max(pred_uncertainty) - np.min(pred_uncertainty)) pred_uncertainty /= np.max(pred_uncertainty) cv2.imwrite(save_path, cv2.cvtColor((pred * 255).astype(np.uint8), cv2.COLOR_RGB2BGR)) if not self.opt.torso: cv2.imwrite(save_path_depth, (pred_depth * 255).astype(np.uint8)) # cv2.imwrite(save_path_error, (loss_raw * 255).astype(np.uint8)) cv2.imwrite(save_path_ambient_aud, (pred_ambient_aud * 255).astype(np.uint8)) cv2.imwrite(save_path_ambient_eye, (pred_ambient_eye * 255).astype(np.uint8)) cv2.imwrite(save_path_uncertainty, (pred_uncertainty * 255).astype(np.uint8)) #cv2.imwrite(save_path_gt, cv2.cvtColor((linear_to_srgb(truths[0].detach().cpu().numpy()) * 255).astype(np.uint8), cv2.COLOR_RGB2BGR)) pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})") pbar.update(loader.batch_size) average_loss = total_loss / self.local_step self.stats["valid_loss"].append(average_loss) if self.local_rank == 0: pbar.close() if not self.use_loss_as_metric and len(self.metrics) > 0: result = self.metrics[0].measure() self.stats["results"].append(result if self.best_mode == 'min' else - result) # if max mode, use -result else: self.stats["results"].append(average_loss) # if no metric, choose best by min loss for metric in self.metrics: self.log(metric.report(), style="blue") if self.use_tensorboardX: metric.write(self.writer, self.epoch, prefix="evaluate") metric.clear() if self.ema is not None: self.ema.restore() self.log(f"++> Evaluate epoch {self.epoch} Finished.") def save_checkpoint(self, name=None, full=False, best=False, remove_old=True): if name is None: name = f'{self.name}_ep{self.epoch:04d}' state = { 'epoch': self.epoch, 'global_step': self.global_step, 'stats': self.stats, } state['mean_count'] = self.model.mean_count state['mean_density'] = self.model.mean_density state['mean_density_torso'] = self.model.mean_density_torso if full: state['optimizer'] = self.optimizer.state_dict() state['lr_scheduler'] = self.lr_scheduler.state_dict() state['scaler'] = self.scaler.state_dict() if self.ema is not None: state['ema'] = self.ema.state_dict() if not best: state['model'] = self.model.state_dict() file_path = f"{self.ckpt_path}/{name}.pth" if remove_old: self.stats["checkpoints"].append(file_path) if len(self.stats["checkpoints"]) > self.max_keep_ckpt: old_ckpt = self.stats["checkpoints"].pop(0) if os.path.exists(old_ckpt): os.remove(old_ckpt) torch.save(state, file_path) else: if len(self.stats["results"]) > 0: # always save new as best... (since metric cannot really reflect performance...) if True: # save ema results if self.ema is not None: self.ema.store() self.ema.copy_to() state['model'] = self.model.state_dict() # we don't consider continued training from the best ckpt, so we discard the unneeded density_grid to save some storage (especially important for dnerf) if 'density_grid' in state['model']: del state['model']['density_grid'] if self.ema is not None: self.ema.restore() torch.save(state, self.best_path) else: self.log(f"[WARN] no evaluated results found, skip saving best checkpoint.") def load_checkpoint(self, checkpoint=None, model_only=False): if checkpoint is None: checkpoint_list = sorted(glob.glob(f'{self.ckpt_path}/{self.name}_ep*.pth')) if checkpoint_list: checkpoint = checkpoint_list[-1] self.log(f"[INFO] Latest checkpoint is {checkpoint}") else: self.log("[WARN] No checkpoint found, model randomly initialized.") return checkpoint_dict = torch.load(checkpoint, map_location=self.device) if 'model' not in checkpoint_dict: self.model.load_state_dict(checkpoint_dict) self.log("[INFO] loaded bare model.") return missing_keys, unexpected_keys = self.model.load_state_dict(checkpoint_dict['model'], strict=False) self.log("[INFO] loaded model.") if len(missing_keys) > 0: self.log(f"[WARN] missing keys: {missing_keys}") if len(unexpected_keys) > 0: self.log(f"[WARN] unexpected keys: {unexpected_keys}") if self.ema is not None and 'ema' in checkpoint_dict: self.ema.load_state_dict(checkpoint_dict['ema']) if 'mean_count' in checkpoint_dict: self.model.mean_count = checkpoint_dict['mean_count'] if 'mean_density' in checkpoint_dict: self.model.mean_density = checkpoint_dict['mean_density'] if 'mean_density_torso' in checkpoint_dict: self.model.mean_density_torso = checkpoint_dict['mean_density_torso'] if model_only: return self.stats = checkpoint_dict['stats'] self.epoch = checkpoint_dict['epoch'] self.global_step = checkpoint_dict['global_step'] self.log(f"[INFO] load at epoch {self.epoch}, global step {self.global_step}") if self.optimizer and 'optimizer' in checkpoint_dict: try: self.optimizer.load_state_dict(checkpoint_dict['optimizer']) self.log("[INFO] loaded optimizer.") except: self.log("[WARN] Failed to load optimizer.") if self.lr_scheduler and 'lr_scheduler' in checkpoint_dict: try: self.lr_scheduler.load_state_dict(checkpoint_dict['lr_scheduler']) self.log("[INFO] loaded scheduler.") except: self.log("[WARN] Failed to load scheduler.") if self.scaler and 'scaler' in checkpoint_dict: try: self.scaler.load_state_dict(checkpoint_dict['scaler']) self.log("[INFO] loaded scaler.") except: self.log("[WARN] Failed to load scaler.") def load_wav(path, sr): return librosa.core.load(path, sr=sr)[0] def preemphasis(wav, k): return signal.lfilter([1, -k], [1], wav) def melspectrogram(wav): D = _stft(preemphasis(wav, 0.97)) S = _amp_to_db(_linear_to_mel(np.abs(D))) - 20 return _normalize(S) def _stft(y): return librosa.stft(y=y, n_fft=800, hop_length=200, win_length=800) def _linear_to_mel(spectogram): global _mel_basis _mel_basis = _build_mel_basis() return np.dot(_mel_basis, spectogram) def _build_mel_basis(): return librosa.filters.mel(sr=16000, n_fft=800, n_mels=80, fmin=55, fmax=7600) def _amp_to_db(x): min_level = np.exp(-5 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) def _normalize(S): return np.clip((2 * 4.) * ((S - -100) / (--100)) - 4., -4., 4.) class AudDataset(object): def __init__(self, wavpath): wav = load_wav(wavpath, 16000) self.orig_mel = melspectrogram(wav).T self.data_len = int((self.orig_mel.shape[0] - 16) / 80. * float(25)) + 2 def get_frame_id(self, frame): return int(basename(frame).split('.')[0]) def crop_audio_window(self, spec, start_frame): if type(start_frame) == int: start_frame_num = start_frame else: start_frame_num = self.get_frame_id(start_frame) start_idx = int(80. * (start_frame_num / float(25))) end_idx = start_idx + 16 if end_idx > spec.shape[0]: # print(end_idx, spec.shape[0]) end_idx = spec.shape[0] start_idx = end_idx - 16 return spec[start_idx: end_idx, :] def __len__(self): return self.data_len def __getitem__(self, idx): mel = self.crop_audio_window(self.orig_mel.copy(), idx) if (mel.shape[0] != 16): raise Exception('mel.shape[0] != 16') mel = torch.FloatTensor(mel.T).unsqueeze(0) return mel