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Abstract 
Additive manufacturing is advantageous for producing lightweight components while 

maintaining function and form. This ability has been bolstered by the introduction of unit lattice 
cells and the gradation of those cells. In cases where loading varies throughout a part, it may be 
necessary to use multiple lattice cell types, also known as multi-lattice structures. In such 
structures, abrupt transitions between geometries may cause stress concentrations, making the 
boundary a primary failure point; thus, transition regions should be created between each lattice 
cell type. Although computational approaches have been proposed, smooth transition regions are 
still difficult to intuit and design, especially between lattices of drastically different geometries. 
This work demonstrates and assesses a method for using variational autoencoders to automate the 
creation of transitional lattice cells. In particular, the work focuses on identifying the relationships 
that exist within the latent space produced by the variational autoencoder. Through computational 
experimentation, it was found that the smoothness of transition regions was higher when the 
endpoints were located closer together in the latent space.  

 
1. Introduction 

Additive manufacturing (AM) is renowned for producing lightweight components while 
addressing complex geometry and strength requirements. This ability has been bolstered by the 
introduction of unit lattice cells, which have enabled designers to significantly reduce the weight 
of a part, while maintaining needed stiffness and geometry[1,2]. Proposed applications of lattices 
are often centered around light weighting or improving the stiffness to weight ratios of components 
manufactured [1]. Lattices are also discussed as impact reduction applications, such as the crumple 
zone in a car [1] or surgical implants that experience variable loading [3]. Recent work has 
indicated that graded lattice structures are the next step for improving upon uniform lattice 
structures [4–8]. These structures vary the thickness of individual strut-based unit cells to 
accommodate areas of high or low stress. Graded lattice structures have been shown to 
significantly outperform the stiffness of uniform lattice structures of comparable weight [5,6,8]. 
Given the unique deformation properties of graded lattices, it is believed that they would be more 
beneficial than uniform lattices in impact reduction applications [9]. Further research has explored 
the possible improvements afforded by multi-lattice structures, which are structures comprised of 
multiple types of unit cell topologies [3,10–13]. Similar to graded lattice structures, multi-lattice 
structures have higher strength and stiffness than uniform lattice structures of comparable 
density[9,12]. However, in multi-lattice structures, abrupt transitions between lattice types may 
cause stress concentrations, which are detrimental to overall part strength [12]. One method to 
address abrupt transition regions is to interpolate between the faces of two lattice cell types [10]. 
This creates a smooth transition which evenly distributes the stresses throughout the structure. 
However, smooth transition regions are currently difficult to intuit and design, especially between 
lattices of drastically different geometries.  
 



Recent work has utilized machine learning to create interpolations between unit cells by 
optimizing the properties of the cells [14,15]. While optimization-based methods are powerful, 
they leave little space for input from the user. This work explores the effectiveness of convolutional 
Variational Autoencoders (VAEs) for automating the creation of transition regions in multi-lattice 
structures. Specifically, we design a VAE system that can predict transitions between different unit 
lattice cells and produce transition regions with any length. Our primary research questions address 
the unknowns about the effects of dimensionality reduction with respect to lattice topologies: 

1. How does distance in the latent space and transition length affect the smoothness of 
interpolations? 

2. How do differences in unit cell topology affect smoothness? 
 

2. Background 
2.1 Unit Cells for Design 

This section defines lattice unit cells and their usefulness to the research and design 
community, as well as establishing the motivation for using multi-lattice structures. In this paper, 
the focus will be on periodic lattice structures, which are created by repeating a unit cell. A uniform 
lattice structure consists of one type of unit cell, where all the cells in the structure have the same 
density and size. The stress strain curve of uniform lattices matches standard plastic deformation, 
where there is an elastic region, followed by a plastic plateau, until the object reaches full 
densification [7]. The properties of each type of unit lattice are unique [1], making it important to 
select the correct type of lattice for a design. A graded lattice structure consists of one type of unit 
cell, but the cells in the structure can vary in volume fraction [6]. It has been proven that 
functionally graded lattice structures perform better with respect to stiffness [5,6,8]. The benefits 
of graded structures are the additional design freedom that can be used to customize failure modes 
and stress-strain responses [7,8]. It was suggested that such properties would be beneficial in 
applications where there are dynamic loads, such as surgical implants [3] or impact protection 
equipment [9]. These structures are also relatively simple to create. Li et al. created graded 
structures by using relative density mapping from a topology optimization and assigning densities 
based on stress requirements [4]. However, the key restriction in graded lattice structures is their 
property dependence on the type of unit cell. It was found that surface-based unit cells 
outperformed strut-based cells due to their connectivity[8], as well as the degree of gradation 
greatly affecting the cumulative energy absorption for body-centered cubic lattices, but not 
Schwarz-P lattices [2].  
 

The term “multi-lattice” structure is being defined as a structure that contains multiple types 
of unit cells. This term is being proposed in this work to differentiate from the other types of 
mesostructures that are possible. The motivation for this work revolves around the implementation 
of multi-lattice structures where the transitions between unit cells are continuous. Many studies 
that explore multi-lattice structures have utilized unit cells with matching boundaries to avoid 
developing a method to connect nodes [3,9,12,13]. Although this is not an area of interest, it is 
important for understanding the behavior of multi-lattice structures on a rudimentary level. To 
create the structures, a relative density mapping from a topology optimization was executed to 
assign 2.5-dimensional unit cells based on the stresses in the system [9,12,13]. As a result, they 
were able to prove that trusses utilizing 2.5-dimensional multi-lattice  structures outperform 
uniform lattice structures regarding stiffness and strength[9,12,13]. Another study was conducted 
by Gok that proved that using a multi-lattice hip implant reduced the maximum stress and weight 



compared to conventional hip implants [3]. Although the work does not provide comparison 
between other types of mesostructured patterning, it does demonstrate a strong use case for multi-
lattice structures. It should be noted that the study was also restricted to unit cells that had 
overlapping boundaries, so the transition regions were inherently smooth. 
 
 Although multi-lattice structures are more beneficial, there are some potential drawbacks. 
Kang et al. concluded that the boundaries between unit cell types caused stress concentrations [12]. 
Which indicates that there is a need for smooth transitions between unit cells to appropriately 
distribute stress through structures. Sanders et al. created transition regions by using signed 
distance functions with respect to the boundaries of each strut [10]. By combining transition 
regions with functional grading, they are able to prove the effectiveness of multi-lattice structures. 
Their work studies topology optimization of multi-lattice structures that use functionally graded 
interpolated transition regions. Although this technique can be applied to “unit cells composed of 
noncylindrical bars or plates”, the interpolations between each pair of unit cells must be computed 
individually. For those looking to optimize both the macrostructure and the mesostructure, this 
method is extremely repetitive and tedious. Wang et al. have also regarded the creation of transition 
regions as “a challenging problem involving complex inverse design at the microscale, costly 
nested optimization at the macroscale, and boundary matching between neighboring 
microstructures [14].” Which is why more recent research has explored how to create smooth 
transitions between unit cells using machine learning methods [10]. 
 

2.2 Machine Learning Methods 
Recent approaches to creating continuous transitions in multi-lattice structures have 

utilized machine learning. This section establishes the two notable machine learning methods 
which have been used for creating multi-lattice structures: Variational Autoencoders (VAEs) and 
Generative Adversarial Networks (GANS).  
 
Generative Adversarial Networks 

Generative Adversarial Networks (GANs) utilize two models that work in parallel to 
ultimately create a single model for generating data [16]. These two models are known as the 
generator and discriminator, which work against one another in effort to beat the other. The 
generator produces fake data that is learned from real data, while the discriminator learns to sort 
the fake and real data. As training progresses, each model progressively becomes better at its 
purpose until the discriminator is unable to distinguish between real and fake data produced by the 
generator. 
 

Wang et al. used an Inverse Homogenization GAN to generate a multi-lattice structure that 
reduced stress concentrations by nearly 80% [15]. This method used a topology optimization of 
the design space to create a relative density mapping, while considering the type of unit cells being 
used. This serves as the main motivation for this work, as it proves there is a benefit to creating 
multi-lattice structures. The advantage to using a GAN, was that it could restrict designs based on 
manufacturability [15].  

However, this work was limited by the type of unit cells that could be interpolated. The 
focus was on triply periodic minimal surfaces, as their physical characteristics could be described 
by 6 principal components. Indicating that only structures generated using functions would be 
suitable for this method, which limits the freedom for using personalized unit cells. The primary 



drawback to this method was that it was only intended to organize the types of unit cells, but only 
based on performance rather than shape. Therefore, interfaces between the cells were not perfect, 
and a second interpolation had to be performed to create smooth transition regions. Indicating that 
the IH-GAN was not ideal for creating interpolations, but better suited for optimization of unit cell 
types. 
 
Variational Autoencoders  

A variational autoencoder (VAE) is a machine learning model that learns how to perform 
data-driven dimensionality reduction [17]. Reducing the dimensionality of data can make it more 
computationally efficient to perform inferences, such as interpolations. What makes VAEs unique 
from other techniques is that they perform a non-linear dimensionality reduction, which is 
advantageous for reducing complex data types [18]. The reduced data is combined to establish the 
reduced dimensionality latent space, which can be used to represent complex mechanical parts 
[19] and performance characteristics of engineered systems [20].  
 

A VAE consists of two models, an encoder, and a decoder, which work in series. Where 
the encoder acts as a recognition model and the decoder as the generative model [16,18]. The 
encoder performs a dimensionality reduction which creates a latent representation of the data. 
The decoder uses the information from the latent space to reconstruct the data. Finally, the VAE 
is trained by minimizing the error between the decoder model and the original data provided. 
 

Wang et al. constructed a VAE to perform multi-lattice interpolations between 2D lattices 
[14]. This work created interpolations by traveling along the shortest paths of trained points in the 
latent space. Another application of VAEs in AM has been describing the properties of randomly 
generated unit cells [18]. Xue et al. used a principal component analysis (PCA) reduction of their 
generated 2D unit cells to classify them based on physical performance [18]. Their work proved 
that location in the latent space correlated with young’s modulus, and shear modulus. Given the 
nature of lattice topologies, VAEs are a good candidate for dimensionality reduction of these 
structures. Wang et al. identify 3 benefits to the latent space created by VAEs [14]: interpolations 
can be created by traveling in the latent space, shape similarity can be evaluated based on distance 
in the latent space, and the latent space can be used to map the physical properties of the unit cells. 
 

In contrast to existing work, our focus is to establish a methodology that permits a designer-
centered approach rather than a fully automated VAE optimization. Embracing a human-in-the-
loop paradigm permits the designer to inject stylistic elements as well as easily account for aspects 
that would be difficult to define numerically. This interaction will currently consist of selecting 
the endpoint unit cells and the length of the transition region. 
 

3. Methodology 
 In this section, the process of data generation, development of the VAE model, and 
execution and evaluation of interpolations are detailed. The current work specifically deals with 
interpolation of 2-dimensional lattice unit cells in order to simplify the data needs and training 
time of the VAE model. The methodological approach to testing the hypotheses of our research 
questions is visualized in Figure 1. Section 1 will describe how artificial data was generated to use 
for testing. Section 2 outlines the hyperparameters and key characteristics of the VAE used for 



training. Section 3 shows the process for creating interpolations in the latent space. Section 4 will 
develop the smoothness metric to measure the performance of the interpolations. 

 
Figure 1: Illustration of overall methodologies 

3.1 Synthetic Data Generation 
 To begin training the VAE, a significant amount of data was necessary to produce a 
sufficiently dense latent space for interpolation. Synthetic data was generated based on a series of 
12 shapes (Figure 2) that mimicked other additive manufacturing literature[9,13]. Although the 
dataset does not contain a wide variety of shapes, it will allow for thorough testing of the latent 
space itself, as our focus is on how the quality of interpolations change within the latent space. 
 

 
Figure 2: Synthetic Shape Types 

To add variation to the data, the thickness of the shapes and densities were varied. Where 
the thickness of the shapes represents the increasing size of the struts. This was done stepwise by 
expanding upon the existing shapes (See top of Figure 3). The density represents the value of each 
pixel between 0 and 1, which are black and white respectively. This representation of density is 
indicative of the likelihood of a pixel being present (See bottom of Figure 3). Once all the shapes 
were generated, there were a total of 415 data points. Although limited, this dataset proved 
sufficient for the purposes of this paper. 

 



 
Figure 3: Original shape with possible density and pixel intensity variations 

3.2 Training the Variational Autoencoder 
This section outlines how the VAE was designed for this research. When the VAE was 

created, there were many factors that had to be considered, as there are many hyperparameters of 
VAEs that affect their performance. First, the overall framework of the VAE affects the 
performance and outputs from the system (See Figure 4). The framework shown was designed to 
mimic the VAEs used to organize images. Another important hyperparameter is the latent 
dimensionality. In this case, the latent dimensionality was chosen based on the qualitative 
difference between the original and decoded unit cells. A qualitative study of latent space 
dimensionality revealed that a dimensionality of 4 provided a desirable balance between training 
time and reconstruction accuracy. 
 

 
Figure 4: Framework of VAE1 

There are many additional features that can be incorporated into a VAE to improve 
performance. In this case, training was terminated early if the loss failed to improve after several 
epochs and the autoencoder was also designed to save the weights from the best iteration.  The 
system used a batch size of 32 to and the adam optimizer. Given this framework, the VAE used 
85% of the dataset to train and 15% to validate and test the performance of the VAE. 

3.3 Creating Interpolations 
Once trained, the autoencoder has established a latent space in which interpolations can be 

performed. The latent space represents a combination of the dimensionally reduced training data. 
The encoder serves to recognize the unit cell and assign it a predicted latent point, and the decoder 
then recreates the unit cell using the predicted latent point. These functions would be used for 
creating interpolations between the different unit cells. As mentioned previously, interpolations 
require an encoding and decoding to produce desired results. The unit cells at the end of the desired 

 
1 Generated with this site: https://dropsofai.com/variational-autoencoders-and-image-generation-with-keras/ 



transition region are first provided to the encoder, which calculates the latent points of the two 
cells. The transitions points are then interpolated between the encoded endpoints in the latent 
space.  Finally, the decoder generates the cells that correspond to those latent points (See Figure 
5). 
 

   
Figure 5: Diagram demonstrating interpolation process 

 
3.4 Evaluating Smoothness 

To accurately gauge the quality of an interpolation, a metric was designed to measure the 
smoothness of the transition region, where smoothness needed to (1) measure how the 
interpolation changed both within images and across images and (2) penalize pixels disconnected 
from the main structure, as we did not want to encourage the generation of floating pixels. Finally, 
(3) the metric should account for pixel intensity, allowing it to account for the gradation of pixels, 
as interpolations will often produce non-binary images. Related metrics have been published in 
the literature [15,21–24], but each of these metrics fails to satisfy at least one of the aforementioned 
criteria. A custom measurement metric was designed to emphasize change along the edges of the 
unit cells using a 3-dimensional Sobel filter [25,26]. This makes it possible to resolve both within 
image changes (the x and y directions shown in Figure 6) and between-image changes (the z 
direction shown in Figure 6) using a single operation.  

 
Figure 6: Visualization of the model convolved with Sobel filter 

 

Specifically, we use the formulation of 3D Sobel operators defined by Amin et al. [26]:  
  



𝑆!(: , : , −1) = 	 *
−1 0 1
−2 0 2
−1 0 1

- , 𝑆!(: , : ,0) = 	 *
−2 0 2
−4 0 4
−2 0 2

- , 𝑆!(: , : ,1) = 	 *
−1 0 1
−2 0 2
−1 0 1

- 

𝑆"(: , : , −1) = 	 *
−1 −2 −1
0 0 0
1 2 1

- , 𝑆"(: , : ,0) = 	 *
−2 −4 −2
0 0 0
2 4 2

- , 𝑆"(: , : ,1) = 	 *
−1 −2 −1
0 0 0
1 2 1

- 

 

( 1 ) 

𝑆#(: , : , −1) = 	 *
−1 −2 −1
−2 −4 −2
−1 −2 −1

- , 𝑆#(: , : ,0) = 	 *
0 0 0
0 0 0
0 0 0

- , 𝑆#(: , : ,1) = 	 *
1 2 1
2 4 2
1 2 1

-  

 
where 𝑆! , 𝑆" , 𝑎𝑛𝑑	𝑆# are the Sobel operators in the x, y, and z directions respectively. 

 
𝐺!,% = 𝑆!(: , : , −1)𝑐𝑜𝑛𝑣(𝐼%) + 𝑆!(: , : ,0)𝑐𝑜𝑛𝑣(𝐼%&') + 𝑆!(: , : ,1)𝑐𝑜𝑛𝑣(𝐼%&() 
𝐺",% = 𝑆"(: , : , −1)𝑐𝑜𝑛𝑣(𝐼%) + 𝑆"(: , : ,0)𝑐𝑜𝑛𝑣(𝐼%&') + 𝑆"(: , : ,1)𝑐𝑜𝑛𝑣(𝐼%&() 
𝐺#,% = 𝑆#(: , : , −1)𝑐𝑜𝑛𝑣(𝐼%) + 𝑆#(: , : ,0)𝑐𝑜𝑛𝑣(𝐼%&') + 𝑆#(: , : ,1)𝑐𝑜𝑛𝑣(𝐼%&() 

 

( 2 ) 

 
where 𝐺! , 𝐺" , 𝑎𝑛𝑑	𝐺# are the gradient array components in the x, y, and z directions respectively, 
I is the image, and i is the index between each gradient array and their respective images. 
 

To directly compare the gradients, the x, y, and z components of the arrays were flattened. 
Then the root mean squared error (RMSE) between the consecutive gradients was measured, as 
that would be the indicator of “smoothness” between each dimension (Eq 3).  

𝑅𝑀𝑆𝐸!,% =	7
∑ 9𝐺!,%&',) − 𝐺!,%,):

(*
)+'

𝑁  

𝑅𝑀𝑆𝐸",% =	7
∑ 9𝐺",%&',) − 𝐺",%,):

(*
)+'

𝑁  

𝑅𝑀𝑆𝐸#,% =	7
∑ 9𝐺#,%&',) − 𝐺#,%,):

(*
)+'

𝑁  

 

( 3 
) 

 

 
where 𝑅𝑀𝑆𝐸! , 𝑅𝑀𝑆𝐸" , 𝑎𝑛𝑑	𝑅𝑀𝑆𝐸# are the root mean squared errors of a pair of gradients in the 
x, y, and z directions respectively, j is the index that identifies the specific term in the gradient 
array, and N is the number of terms in a single gradient array. 
 

Once the RMSE was calculated for the x, y, and z components, the average RMSE was 
calculated and normalized to create a final “smoothness value”.   

 

𝑅𝑀𝑆𝐸% =	
𝑅𝑀𝑆𝐸!,% + 	𝑅𝑀𝑆𝐸",% + 𝑅𝑀𝑆𝐸#,%

3 ⋅ 𝑅𝑀𝑆𝐸,-!
	 ( 4 ) 

 
where 𝑅𝑀𝑆𝐸,-! is the maximum possible 𝑅𝑀𝑆𝐸% which is calculated based on the filter used. 
The normalization of the RMSE allowed for the smoothness value to be represented as a 
percentage.  



𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = (1 − 𝑎𝑣𝑔(𝑅𝑀𝑆𝐸%)) ⋅ 100	 ( 5 ) 

To validate and determine the limits of this measurement, multiple baseline evaluations 
were conducted. These evaluations consisted of the following (Table 2): 

1. 1-pixel step-wise interpolation with decreasing pixel intensity values 
2. Row-step-wise interpolation with transition occurring at fully solid shape 
3. A “smooth” interpolation with abrupt changes 
4. Random pixel arrays 

 
Evaluation 1 was to determine the best possible interpolation value, as it is impossible to 

achieve 100% smoothness unless the unit cells are identical. Evaluation 2 was simply a test 
interpolation to determine the performance of the metric if the pixels were purely black and white. 
Evaluation 3 was to determine how the interpolations would be affected if a “bad” transition step 
was introduced in random locations. Evaluation 4 was chosen to evaluate the metric when the 
transitions lack a clearly defined edge.  
 

Table 1: Smoothness baseline metric evaluations 

Interpolation Smoothness 

 

 
98.797% 

 

 
80.5% 

 
66.775% 

 

 
 

79.879% 

4. Results 

This section reports the performance of the trained VAE, assesses the qualitative and 
quantitative results from interpolations, and addresses the research questions outlined in the 
introduction. Overall, the purpose of this experiment was to demonstrate the feasibility of using 
VAE's to interpolate 2D unit cells and determine a metric for evaluating such interpolations. 

 
4.1 Performance of Convolutional Variational Autoencoder (VAE) 

Before using the results from a VAE, it should be determined whether the VAE is 
overfitting or underfitting the data. The performance of the VAE was measured using loss and 
coefficient of determination (R2 value), which can be seen in Figure 7. The R2 value was in excess 
of 95%, which indicates that the model is a good fit of the training data. The significant decrease 
in loss indicates that the generated unit cells began to match the original unit cells more closely. 
Given these results, the trained VAE was considered satisfactory for testing. 
 



 
Figure 7: Performance of VAE with a latent dimensionality of 4 

 
4.2 Interpolation Results 

This section demonstrates how the smoothness evaluation is executed, and what it outputs. 
To address the research questions in the introduction, this section also shows the testing of different 
types of interpolations. Note that the decoded endpoint unit cells do not perfectly match the user 
provided unit cells (See Figure 8(a)), this was due to use of the test unit cells for interpolation. 
Since the VAE is trained on 85% of the data, it created the best reconstructions possible to match 
the provided test points. It was expected that the encoder would not be capable of perfect 
recreations of test points since the VAE contains loss. Whereas Figure 8(b) shows a method for 
visualizing the latent space, while helping to show where the interpolation(a) is oriented with 
respect to the rest of the latent space.    



 
Figure 8: Demonstration of Interpolation: (a) Interpolation (b) PCA reduced latent space plot 

with the interpolation points super imposed in the space 

 
How does distance in the latent space and transition length affect smoothness? 

 It was hypothesized that the distance in the latent space would result in a decrease in 
smoothness as points would become spread further apart. Where the length of the transition region 
would have a proportional relationship with the smoothness of the interpolations. To test this 
hypothesis, a variety of different interpolations were defined and assessed. First, the mean and 
standard deviation of the latent space were calculated, since the latent space is unitless, the standard 
deviations within the space serve as the best measurement for comparison between trained VAEs. 
Interpolations were performed from -3 standard deviations to 3 standard deviations from the mean. 
We tested sets of interpolations consisting of 5, 10 and 15 transition points. A sample of the 
interpolations can be seen in Table 2 for transition length 10. 



Table 2: Visualization of transitions based on number of standard deviations with 10 
interpolation points 

Number of 
Standard 
Deviations 
Between 
Endpoints 

 
 
 

Resulting Interpolations 

 
1 

 
 
2 

 
 
3 

 
 
4 

 
 
5 

 
 
6 

 
 
Visually, the unit cells are most similar when there are more interpolation points and 1 standard 
deviation between the endpoints. To confirm this, the smoothness evaluation was conducted on all 
interpolations (See Figure 9).  
  



 
 

Figure 9: Smoothness vs Number of Standard Deviations in the Latent Space. (a) Analysis based 
on 15 interpolation points - More interpolation points in the latent space result in slightly poorer 
transitions as distance increases. (b) Analysis based on 10 interpolation points (c) Analysis based 
on 5 interpolation points - Fewer interpolation points result in significantly rougher transitions 
over a longer distance in the latent space. 

To fully confirm the results, an ordinary least squares (OLS) regression was executed on 
the data gathered in Figure 9, where the dependent variable was percent smoothness, and the 
independent variables were transition length and distance in the latent space. This regression was 
found to be highly statistically significant (p < 0.001) as well as practically significant (R2 = 0.924). 
The p-values in Table 4 confirmed that as the distance between endpoints increases, the 
smoothness decreases. The distance in the latent space has the most significant effect on 
smoothness. However, the results also indicate that transition length alone is unlikely to influence 
the smoothness value. Consequently, the combination of the two variables, noted by the cross-term 
in Table 4, does directly affect the smoothness. This indicates that the transition length only affects 
the smoothness when distance is also accounted for.     

Table 3: Ordinary Least Square Regression 
 

Coefficient Standard 
Error 

p 

Constant: 108.6807 3.882 p < 0.0001 
Number of Standard Deviations (Distance): -8.8616 0.997 p < 0.0001 

Transition Length: -0.4182 0.359 0.264 
Cross-Term: 0.4601 0.092 p < 0.0001 

 
Given these results, the best interpolations can be produced by reducing the distance traveled in 
the latent space as much as possible. In cases where the distance is vast between endpoints, 
increasing the number of transitions will only improve the smoothness by a small amount. The 
smoothness is heavily reliant on distance within the latent space. 
 

How do differences in unit cell topologies affect smoothness? 
This section will explore the effects of the qualitative differences in unit cell shape with 

respect to smoothness. It is hypothesized that as the endpoints of an interpolation become more 
“different”, their smoothness should decrease. Given the complexity of the latent space, visual 



inspection may be deceptive, which is why it is important to address the unexpected. Table 5 
consists of an array of various interpolations, all of which have the same initial interpolation point. 
This was to ensure that the interpolations were directly comparable to one another. Although the 
distances between the endpoints are not the same, this series of interpolations are ordered based 
on smoothness performance, where the best interpolation is Example 1.  

 
Table 4: Examples of different topologies and their effect on smoothness of the interpolation 

Example Example Interpolations 
Smoothness 

(%) 

 
1 

 
95.946 

 
2 

 
95.398 

 
3 

 

 
91.576 

 
4 

 

90.928 

 
 
5 

 

88.141 

 
The results from Table 5 were somewhat as expected, but this section will outline why the 

results here were reasonable. From a qualitative standpoint, the rankings were expected to order 
Example 1 > 2 > 4 > 5 > 3, however, the smoothness metric is based on the variation along all the 
unit cells, not solely the endpoints. Example interpolations 1 and 2 performed similarly well, as 
both were a rotation of the initial endpoint. Example 3 performed slightly worse than 1 and 2, but 
there were a lot of pixels that needed to be activated. However, based on the qualitative evaluation 
it would appear that 3 should have performed the worst. Since the smoothness evaluation is highly 
dependent on the amount of similarity between consecutive unit cells, the endpoint unit cells in 
Example 3 would have increased the smoothness percentage significantly. Finally, example 4 
performed slightly better than example 5, as the diagonal was not removed in example 4, meaning 
that fewer changes occurred. 



 
 

5. Discussion 
 This section will discuss the results obtained from a transition region developed between 
four different types of unit cells, while highlighting the many possibilities that are afforded by 
VAEs and their future work. This work underscores the potential of VAEs for supporting transition 
region design. However, the smoothness of the transition region is primarily predicted by the 
distance in the latent space. Therefore, our hypothesis is partially refuted, as the transition length 
did not have the expected impact on smoothness.  
 

Figure 10(a) shows how powerful VAEs are by demonstrating a smooth transition region 
between four distinct unit cells. Such a structure represents how a transition boundary would be 
developed between four different lattice topologies. Multi-lattice designs incorporating more than 
two types of lattices could expand design possibilities but creating transition regions has been a 
main restriction. As far as we know, this type of transition has only been reproduced using a VAE, 
as it is extremely computationally intensive using other methods. Figure 10(b) represents the 
locations of each of the predicted points in the PCA reduced latent space. As established 
previously, the closer points will have smoother transitions based on the smoothness metric. This 
type of visual aid could be utilized to quickly determine which transition regions perform poorly.  
 



   

 
Figure 10: (a) Example of mesh grid interpolation (b) PCA reduced representation of the mesh 

grid interpolation in the latent space 



6. Conclusion 
In cases where the loading varies throughout a part, it may be necessary to use multiple 

lattice cell types, also known as multi-lattice structures. In such structures, abrupt transitions 
between lattice types may cause stress concentrations, making the boundary a primary failure 
point; thus, transition regions should be created between each lattice cell type. This work 
demonstrates and assesses a method for using variational autoencoders to automate the creation of 
transitions amongst multi-lattice structures. In comparison to other computational approaches, this 
work focused on analyzing how a VAE latent space affected unit cell interpolations by answering 
two research questions.  

 
First, we answered how distance in the latent space and the number of transitions affects 

the smoothness of an interpolation. Specifically, we assessed the smoothness of lattice 
interpolations produced using a VAE, evaluated using 3D Sobel filters.  Using an OLS regression, 
it was found that distance between endpoints in the latent space had the most significant impact on 
smoothness, whereas the number of steps in the transition were unlikely to affect the smoothness 
alone. Working in unison, the two variables only had some impact on the smoothness value. Given 
these results, the best interpolations can be produced by reducing the distance traveled in the latent 
space as much as possible. This indicates the need for using latent space optimization methods to 
minimize the distance between desired end points during training. 

 
Secondly, we qualitatively evaluated comparable interpolations to determine whether their 

performance met our expectations. The results from these tests indicate that human qualitative 
similarities may not perform as well as similarities made by the model. Based on the smoothness 
evaluations of our interpolations, humans cannot accurately and precisely determine which set of 
interpolations is most smooth.  
 
 Future work will also focus on modifications to be made that encourage manufacturability 
of transition regions. This will require that the connectivity between cells can be ensured, as the 
physical properties of the unit cells are dependent on their ability to be created. This will be 
followed by determining the best method for analyzing the functionality of these transition regions, 
as they are extremely complex structures which require physical analyses to be useful to designers. 
It is important to determine if the smoothness metric has any correlation to physical properties 
within a transition region. As discussed previously, other works have incorporated physical 
properties into their latent space optimization [14], which may prove to be the best option for 
organizing the latent space.  
 

In order to take advantage of the latent space created by VAEs, we must determine how to 
address the effects on distance within that space. Given that the distance has such a huge impact 
on smoothness, the unit cells that perform best will exist in the center of the space where they are 
close to all the other unit cell. Unit cells on the boundaries of the latent space have less information, 
so they are difficult to decode without significant loss of the original unit cell. Furthermore, the 
resolution of the outputs is highly dependent on the resolution of the training data. The data size 
increases by an exponent of the data dimensionality. Consequentially, as this work expands into 
the 3-dimensional space, we will have to address extreme increases in data size and therefore 
training times of the VAE. 
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