import matplotlib.pyplot as plt import numpy as np import pandas as pd import json from json import JSONEncoder import streamlit as st from Data_Generation.Dataset_Generation_Functions import make_boxes from Data_Generation.Piecewise_Box_Functions import basic_box_array, forward_slash_array, combine_arrays, add_thickness from Data_Plotting.Plot_TSNE import TSNE_reduction, plot_dimensionality_reduction ######################################################################################################################## # User Inputs image_size = st.slider('Select a value for the image size', min_value=9, max_value=16) # Max value is limited due to # computational limitations of streamlit density_selection = st.slider('Select a value for the number of equally spaced density values (0, 1]', min_value=1, max_value=10) ######################################################################################################################## # Compute Example Shapes densities = np.linspace(0, 1, num=density_selection+1)[1:] sample_basic_box = basic_box_array(image_size, 1) sample_forward_slash_box = forward_slash_array(image_size, 1) sample_combined = combine_arrays([sample_forward_slash_box, sample_basic_box]) sample_density = np.array([sample_combined * density_value for density_value in densities]) sample_thickness = [] for i in [1, 2, 3, 4]: copy = sample_combined test = add_thickness(copy, i) sample_thickness.append(test) ######################################################################################################################## # Output Example Shapes st.write("Click 'Generate Samples' to show some density values that would exist in your dataset:") # Show samples of various density values if st.button('Generate Samples'): # Generate the samples plt.figure(1) st.header("Sample Density Figures:") max_figures = min(density_selection, 5) # Determine the number of figures to display for i in range(max_figures): plt.subplot(1, max_figures+1, i+1), plt.imshow(sample_density[i], cmap='gray', vmin=0, vmax=1) if i != 0: # Show y-label for only first figure plt.tick_params(left=False, labelleft=False) plt.title("Density: " + str(round(densities[i], 4)), fontsize=6) plt.figure(1) # These settings can be used to display a colorbar # cax = plt.axes([0.85, 0.1, 0.075, 0.8]) # plt.colorbar(cax=cax, shrink=0.1) st.pyplot(plt.figure(1)) # Show samples of various thickness values st.header("Sample Thickness Figures:") plt.figure(2) for i in range(len(sample_thickness)): plt.subplot(1, 5, i+1), plt.imshow(sample_thickness[i], cmap='gray', vmin=0, vmax=1) if i != 0: # Show y-label for only first figure plt.tick_params(left=False, labelleft=False) plt.title("Thickness: " + str(i+1), fontsize=6) plt.figure(2) # These settings can be used to display a colorbar # cax = plt.axes([0.85, 0.1, 0.075, 0.8]) # plt.colorbar(cax=cax, shrink=0.1) st.pyplot(plt.figure(2)) ######################################################################################################################## # Output Entire Dataset st.write("Click 'Generate Dataset' to generate the dataset based on the conditions set previously:") if st.button('Generate Dataset'): # Generate the dataset boxes = make_boxes(image_size, densities) # Create all the data points # Unpack all the data box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\ = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6] # Plot TSNE of the data # Determine the labels of the TSNE Plot def flatten_array(array): # define a function to flatten a 2D array return array.flatten() # apply the flatten_array function to each array in the list and create a list of flattened arrays flattened_arrays = np.array([flatten_array(a) for a in box_arrays]) # calculate the average density for each array avg_density = np.sum(flattened_arrays, axis=1)/(np.shape(box_arrays[0])[0]*np.shape(box_arrays[0])[1]) # Perform the TSNE Reduction x, y, title, embedding = TSNE_reduction(flattened_arrays) plt.figure(3) # set the color values for the plot plot_dimensionality_reduction(x, y, avg_density, title) # plt.title(title) plt.figure(3) st.pyplot(plt.figure(3)) # Create a class to read the information from the generated CSV file class NumpyArrayEncoder(JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return JSONEncoder.default(self, obj) # Save the arrays in a JSON format so they can be read box_arrays = [json.dumps(x, cls=NumpyArrayEncoder) for x in box_arrays] # Create a dataframe to convert the data to a csv file dataframe = (pd.DataFrame((box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness, hot_dog_box_thickness, hamburger_box_thickness)).T).astype(str) # Rename the columns to the desired outputs dataframe = dataframe.rename( columns={0: "Array", 1: "Density", 2: "Basic Box Thickness", 3: "Forward Slash Strut Thickness", 4: "Back Slash Strut Thickness", 5: "Vertical Strut Thickness", 6: "Horizontal Strut Thickness"}) # Convert the dataframe to CSV csv = dataframe.to_csv() st.write("Here is what a portion of the generated data looks like (double click on the 'Array' cells to view the full array):") st.write(dataframe.iloc[:100,:]) # Display the data generated st.write("Click 'Download' to download a CSV file of the dataset:") st.download_button("Download Dataset", csv, file_name='2D_Lattice.csv') # Provide download for user