import numpy as np from Data_Generation.Piecewise_Box_Functions import basic_box_array, back_slash_array, forward_slash_array, hamburger_array, hot_dog_array # For Internal Testing # from Piecewise_Box_Functions import basic_box_array, back_slash_array, forward_slash_array, hamburger_array, hot_dog_array import pandas as pd import json import matplotlib.pyplot as plt from json import JSONEncoder ######################################################################################################################## # Make the data using all the code in Shape_Generation_Functions.py def make_boxes(image_size: int, densities: list) -> list: """ :param image_size: [int] - the pixel height and width of the generated arrays :param densities: [list[float]] - of the desired pixel values to apply to active pixels - Recommend values (0,1] :return: list[tuple] - [Array, Density, Thickness of each strut type] this is all the defining information for all the generated data. """ matrix = [] # Establish the maximum thickness for each type of strut max_vert = int(np.ceil(1 / 2 * image_size) - 2) max_diag = int(image_size - 3) max_basic = int(np.ceil(1 / 2 * image_size) - 1) # Adds different density values for i in range(len(densities)): for j in range(1, max_basic): # basic box loop, always want a border basic_box_thickness = j array_1 = basic_box_array(image_size, basic_box_thickness) if np.unique([array_1]).all() > 0: # Checks if there is a solid figure break for k in range(0, max_vert): hamburger_box_thickness = k array_2 = hamburger_array(image_size, hamburger_box_thickness) + array_1 array_2 = np.array(array_2 > 0, dtype=int) # Keep all values 0/1 if np.unique([array_2]).all() > 0: break for l in range(0, max_vert): hot_dog_box_thickness = l array_3 = hot_dog_array(image_size, hot_dog_box_thickness) + array_2 array_3 = np.array(array_3 > 0, dtype=int) if np.unique([array_3]).all() > 0: break for m in range(0, max_diag): forward_slash_box_thickness = m array_4 = forward_slash_array(image_size, forward_slash_box_thickness) + array_3 array_4 = np.array(array_4 > 0, dtype=int) if np.unique([array_4]).all() > 0: break for n in range(0, max_diag): back_slash_box_thickness = n array_5 = back_slash_array(image_size, back_slash_box_thickness) + array_4 array_5 = np.array(array_5 > 0, dtype=int) if np.unique([array_5]).all() > 0: break the_tuple = (array_5*densities[i], densities[i], basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness, hot_dog_box_thickness, hamburger_box_thickness) matrix.append(the_tuple) return matrix ######################################################################################################################## # How to read the files ''' df = pd.read_csv('2D_Lattice.csv') print(np.shape(df)) row = 1 box = df.iloc[row, 1] array = np.array(json.loads(box)) plt.imshow(array, vmin=0, vmax=1) plt.show() '''