import re from typing import Literal, cast from pydantic import BaseModel, Field from utils import format_docstring ActionType = Literal["none", "speak", "non-verbal communication", "action", "leave"] class Message(BaseModel): """ An interface for messages. There is only one required method: to_natural_language """ def to_natural_language(self) -> str: raise NotImplementedError class SimpleMessage(Message): """ A simple message with a single string field. """ message: str = Field(description="the message") def to_natural_language(self) -> str: return self.message class Observation(Message): last_turn: str = Field(description="the last turn of the conversation") turn_number: int = Field(description="the turn number of the conversation") available_actions: list[ActionType] = Field(description="the available actions") def to_natural_language(self) -> str: if self.turn_number == 0: return f"\n{self.last_turn}\nConversation Starts:\n" else: return f"Turn #{self.turn_number-1}: {self.last_turn}\n" class ScriptBackground(Message): scenario: str = Field(description="scenario of the episode") p1_name: str = Field(description="name of participant 1") p2_name: str = Field(description="name of participant 2") p1_background: str = Field(description="background of participant 1") p2_background: str = Field(description="background of participant 2") p1_goal: str = Field(description="goal of participant 1") p2_goal: str = Field(description="goal of participant 2") def to_natural_language(self) -> str: if self.p1_background or self.p2_background: p1_background = self.p1_background if self.p1_background else "Unknown" p2_background = self.p2_background if self.p2_background else "Unknown" # Not using AND, since in stranger relation the background is not visible return format_docstring( f"""Here is the context of this interaction: Scenario: {self.scenario} Participants: {self.p1_name} and {self.p2_name} {self.p1_name}'s background: {p1_background} {self.p2_name}'s background: {p2_background} {self.p1_name}'s goal: {self.p1_goal} {self.p2_name}'s goal: {self.p2_goal} """ ) else: return format_docstring( f"""Here is the context of this interaction: Scenario: {self.scenario} Participants: {self.p1_name} and {self.p2_name} {self.p1_name}'s goal: {self.p1_goal} {self.p2_name}'s goal: {self.p2_goal} """ ) class ScriptEnvironmentResponse(Message): terminated: bool = Field( description="whether the conversation is terminated", default_factory=lambda: False, ) p1_rate: float | tuple[float, dict[str, float]] | None = Field( description="rating of participant 1, on the scale of 1 to 10" ) p2_rate: float | tuple[float, dict[str, float]] | None = Field( description="rating of participant 2, on the scale of 1 to 10" ) comments: str | None = Field( description="All of the comments supporting the termination and rating" ) def to_natural_language(self) -> str: reason_to_stop = format_docstring( f"""Environment response: {"The conversation is terminated." if self.terminated else ""} {"Rating of participant 1" + str(self.p1_rate) if self.p1_rate is not None else ""} {"Rating of participant 2" + str(self.p2_rate) if self.p2_rate is not None else ""} {self.comments if self.comments is not None else ""} """ ) clean_text = "" for line in reason_to_stop.split("\n"): if line.strip(): clean_text += line + "\n" return clean_text class AgentAction(Message): action_type: ActionType = Field( description="whether to speak at this turn or choose to not do anything" ) argument: str = Field( description="the utterance if choose to speak, the expression or gesture if choose non-verbal communication, or the physical action if choose action" ) def to_natural_language(self) -> str: match self.action_type: case "none": return "did nothing" case "speak": return f"{self.argument}" case "non-verbal communication": return f"[{self.action_type}] {self.argument}" case "action": return f"[{self.action_type}] {self.argument}" case "leave": return "left the conversation" ScriptInteractionReturnType = tuple[ list[list[tuple[str, str, Message]]], list[tuple[str, Message]] ] class ScriptInteraction(Message): interactions: str = Field( description="""The interaction between the two participants in maximum 20 turns. Each turn is separated by a newline, and should only describe one agent. Following the structure: Turn #x [participant's name] [action] {argument for some actions} You can use different types of actions, but only use one in each turn. You should move other information into argument part. Below shows a python code snippet of the format for each action type: match self.action_type: case "none": return "did nothing" case "speak": return f'said: "{self.argument}"' case "non-verbal communication": return f"[{self.action_type}] {self.argument}" case "action": return f"[{self.action_type}] {self.argument}" case "leave": return "left the conversation" For example, the following is acceptable: Turn #x Oliver Thompson said: "Hey Esmeralda, what's wrong? You seem upset." Turn #x Esmeralda Solis [action] moved closer Turn #x Oliver Thompson [non-verbal communication] smiled Turn #x Esmeralda Solis did nothing Turn #x Oliver Thompson left the conversation Turn #x Esmeralda Solis [action] leaned in and lowered her voice: "Sorry" And the following is not acceptable: Turn #1 Oliver Thompson [speak] said: "Hey Esmeralda, what's wrong? You seem upset." Turn #1 Esmeralda Solis non-verbal communication moved closer """ ) def to_natural_language(self) -> str: return self.interactions def parse( self, agent_names: list[str], background: str ) -> tuple[list[list[tuple[str, str, Message]]], list[tuple[str, Message]]]: interaction = self.interactions # print("Interaction: ", interaction) lines = self.split_by_turn(interaction) agent_results = [] results: list[list[tuple[str, str, Message]]] = [ [ ( "Environment", name, Observation( last_turn=background, turn_number=0, available_actions=["none"], ), ) for name in agent_names ] ] for line_idx, line in enumerate(lines): try: res = self.parse_single_dialogue(line) action: AgentAction = cast(AgentAction, res["action"]) argument: str = cast(str, res["argument"]) cast(int, res["turn"]) name: str = cast(str, res["name"]) parsed_action = AgentAction(action_type=action, argument=argument) if name not in agent_names: print( f"The name of the agent, {name}, is not in the list of agent names, {agent_names}" ) name = agent_names[ line_idx % 2 ] # TODO Not sure what name to be set here except Exception as e: print( f"Error when parsing the dialogue: {line}", f"The error is: {e}", ) raise e parsed_action = AgentAction(action_type="none", argument="") name = agent_names[line_idx % 2] # TODO same question as above inactive_agent_name = ( agent_names[0] if name == agent_names[1] else agent_names[1] ) results.append( [ ( "Environment", name, Observation( last_turn="environment is the agent", turn_number=line_idx + 1, available_actions=["none"], ), ) for name in agent_names ] + [ (name, "Environment", parsed_action), ( inactive_agent_name, "Environment", AgentAction(action_type="none", argument="did nothing"), ), ] ) agent_results.append((name, parsed_action)) # print("Parsed agent results: ", agent_results) return (results, agent_results) # type: ignore def parse_single_dialogue( self, dialogue: str ) -> dict[str, str | int | AgentAction | None]: """Parse a single dialogue string and return a dictionary with turn, name, action, and argument.""" # Match the turn number and name. Assume all agent name starts with a capital letter and is followed by lowercase letters match_turn_name = re.match( r"Turn #?(\d+):?\s*\n((?:[A-Z]['a-z]* ?)+)", dialogue ) if not match_turn_name: raise ValueError( f"The dialogue does not match the expected format: {dialogue}" ) return None # TODO Which should we use, return None or raise error? turn, name = match_turn_name.groups() action_content = dialogue[ len(match_turn_name.group(0)) : ].strip() # Extract the action content # Check for different action types if "did nothing" in action_content: action, argument = "none", "" elif match := re.match(r'said: "(.*?)"', action_content): action, argument = "speak", match.group(1) action, argument = action.strip(), argument.strip() elif match := re.match(r'\[speak\] said: "(.*?)"', action_content): action, argument = "speak", match.group(1) action, argument = action.strip(), argument.strip() elif match := re.match( r"\[(non-verbal communication|action)\] (.*)", action_content ): action, argument = match.groups() elif "left the conversation" in action_content: # TODO Make it more elegant to handle the situation of `left the conversation.` action, argument = "leave", "" else: action, argument = None, None parsed_item = { "turn": int(turn), "name": name.strip(), "action": action, "argument": argument, } return parsed_item def split_by_turn(self, input_string: str) -> list[str]: """Split the input dialogue string by turn and return a list of dialogues.""" # Split using 'Turn #' as delimiter, but keep the delimiter in the results dialogues = re.split(r"(?=Turn #?\d+)", input_string) # Remove any empty strings and strip whitespace dialogues = [dialogue.strip() for dialogue in dialogues if dialogue.strip()] dialogues = [dialogue for dialogue in dialogues if dialogue.startswith("Turn")] # Change from Turn #x to Turn (#)x (# is optional) dialogues[-1] = "\n".join( dialogues[-1].split("\n")[:2] ) # Discard further input in the last turn for dialogue in dialogues: # TODO this is current workaround for the issue of multiple agents in one turn if len(dialogue.split("\n")) >= 3: raise ValueError("Only one agent can act per turn.") return dialogues @staticmethod def default_value_for_return_type() -> ScriptInteractionReturnType: results_1: list[list[tuple[str, str, Message]]] = [ [ ( "Environment", name, Observation( last_turn="Environment is the agent", turn_number=0, available_actions=["none"], ), ) for name in ["none", "none"] ] ] results_2: list[tuple[str, Message]] = [ ("", AgentAction(action_type="none", argument="")) ] return (results_1, results_2)