import numpy as np import soundfile as sf from scipy import signal import librosa import subprocess import matplotlib.pyplot as plt from pydub import AudioSegment def readaud(sound_path): aud, sr = sf.read(sound_path, dtype=np.float32) if len(aud.shape) == 2: aud = aud.mean(1) if sr != 16000: alen = int(aud.shape[0] / sr * 16000) aud = signal.resample(aud, alen) return aud def normalise_transcript(xcp): xcp = xcp.lower() while ' ' in xcp: xcp = xcp.replace(' ', ' ') return xcp def get_pitch_tracks(sound_path): orig_ftype = sound_path.split('.')[-1] if orig_ftype == '.wav': wav_path = sound_path else: aud_data = AudioSegment.from_file(sound_path, orig_ftype) curdir = subprocess.run(["pwd"], capture_output=True, text=True) curdir = curdir.stdout.splitlines()[0] fname = sound_path.split('/')[-1].replace(orig_ftype,'') tmp_path = f'{curdir}/{fname}_tmp.wav' aud_data.export(tmp_path, format="wav") wav_path = tmp_path #print('FILE PATH:', wav_path) f0_data = subprocess.run(["REAPER/build/reaper", "-i", wav_path, '-f', '/dev/stdout', '-a'],capture_output=True).stdout #print('PLAIN:',f0_data) f0_data = f0_data.decode() #print('DECODE-PITCH:',f0_data) f0_data = f0_data.split('EST_Header_End\n')[1].splitlines() #print(f0_data) f0_data = [l.split(' ') for l in f0_data] f0_data = [l for l in f0_data if len(l) == 3] # the last line or 2 lines are other info, different format f0_data = [ [float(t), float(f)] for t,v,f in f0_data if v=='1'] if orig_ftype != '.wav': subprocess.run(["rm", tmp_path]) return f0_data # transcript could be from a corpus with the wav file, # input by the user, # or from a previous speech recognition process def align_and_graph(sound_path, transcript, aligner_function): plt.close('all') # fetch data speech = readaud(sound_path) w_align, seg_align = aligner_function(speech,normalise_transcript(transcript)) # set up the graph shape rec_start = w_align[0][1] rec_end = w_align[-1][2] f0_data = get_pitch_tracks(sound_path) if f0_data: f_max = max([f0 for t,f0 in f0_data]) + 50 else: f_max = 400 fig, axes1 = plt.subplots(figsize=(15,3)) plt.xlim([rec_start, rec_end]) axes1.set_ylim([0.0, f_max]) axes1.get_xaxis().set_visible(False) # draw word boundaries for w,s,e in w_align: plt.vlines(s,0,f_max,linewidth=0.5,color='black') plt.vlines(e,0,f_max,linewidth=0.5,color='dimgrey') #plt.text( (s+e)/2 - (len(w)*.01), f_max+15, w, fontsize=15) plt.text( (s+e)/2, f_max+15, w, fontsize=15, ha="center") # draw phone / char boundaries for p,s,e in seg_align: plt.vlines(s,0,f_max,linewidth=0.3,color='cadetblue',linestyle=(0,(10,4))) plt.vlines(e,0,f_max,linewidth=0.3,color='cadetblue',linestyle=(0,(10,4))) plt.text( (s+e)/2 - (len(p)*.01), -1*f_max/10, p, fontsize=11, color='teal') f0c = "blue" axes1.scatter([t for t,f0 in f0_data], [f0 for t,f0 in f0_data], color=f0c) w, sr = librosa.load(sound_path) fr_l = 2048 # librosa default h_l = 512 # default rmse = librosa.feature.rms(y=w, frame_length = fr_l, hop_length = h_l) rmse = rmse[0] # show rms energy axes2 = axes1.twinx() axes2.set_ylim([0.0, 0.5]) rms_xval = [(h_l*i)/sr for i in range(len(rmse))] axes2.plot(rms_xval,rmse,color='peachpuff',linewidth=3.5) # label the graph axes1.set_ylabel("Pitch (F0, Hz)", fontsize=14, color="blue") axes2.set_ylabel("RMS energy", fontsize=14,color="coral") #plt.title(f'Recording {file_id} (L1 {language_dict[file_id]})', fontsize=15) #plt.show() return fig # uppboðssøla bussleiðini viðmerkingar upprunaligur