import os from dotenv import load_dotenv import gradio as gr from langchain_huggingface import HuggingFaceEndpoint # Load environment variables load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") # Initialize the Hugging Face endpoint for inference llm = HuggingFaceEndpoint( repo_id="mistralai/Mistral-7B-Instruct-v0.3", # Replace with your model repo huggingfacehub_api_token=HF_TOKEN.strip(), temperature=0.7, max_new_tokens=100 ) # Function to handle chatbot response def chatbot_response(message): try: response = llm(message) return response except Exception as e: return f"Error: {e}" # Gradio Interface for Chatbot without Guardrails with gr.Blocks() as app_without_guardrails: gr.Markdown("## Chatbot Without Guardrails") gr.Markdown("This chatbot uses the model directly without applying any content filtering.") # Input and output with gr.Row(): user_input = gr.Textbox(label="Your Message", placeholder="Type here...") response_output = gr.Textbox(label="Response", placeholder="Bot will respond here...") submit_button = gr.Button("Send") # Button click event submit_button.click( chatbot_response, inputs=[user_input], outputs=[response_output] ) # Launch the app if __name__ == "__main__": app_without_guardrails.launch()