
Understanding the Performance of Transformer
Inference

by

Anne Ouyang

S.B., Computer Science and Engineering,
Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Anne Ouyang. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Anne Ouyang
Department of Electrical Engineering and Computer Science
May 12, 2023

Certified by: Jonathan Ragan-Kelley
Esther & Harold E. Edgerton Assistant Professor
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Understanding the Performance of Transformer Inference

by

Anne Ouyang

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The state of the art results in natural language processing tasks have been obtained
by scaling up transformer-based machine learning models, which can have more than
a hundred billion parameters. Training and deploying these models can be difficult
and extremely expensive, and performance engineering efforts to improve the latency
and throughput of these models are crucial in enabling widespread applications.

We developed an analytical model for studying the performance of transformer
inference and combined it with empirical studies using existing frameworks to gain
insights into the performance characteristics of transformers and efficiency of existing
implementations. The findings revealed the contribution of the different operations
to the total parameter count, floating-point operations count, activation memory. A
comparison between prefilling and generation stages highlighted differences in perfor-
mance characteristics, with generation being slower due to low arithmetic intensity
operations. Empirical studies with existing implementations on single GPUs showed
that the implementation has a high roofline utilization but low FLOPs utilization dur-
ing the generation stage, which indicates that implementation is reasonably efficient,
but the low arithmetic operations during autoregressive generation is an inherent
limitation of transformer-based architectures.

We also experimented with various parallelism strategies for different inference
workloads and distilled our observations as recommendations for effectively using
parallelism. We found that the best parallelism strategy depends on the specific
workloads (batch size and input and output sequence lengths). We also found that
model parallelism can be useful for reasons beyond fitting the model in the GPU
memory –– for example, in the case where a model fits in a single GPU, in the
generation stage, tensor parallelism can decrease the latency for small batch settings.

We hope that a comprehensive understanding of the performance characteristics
and trade-offs can serve as a guide for researchers to optimize hardware resource
utilization and enhance the efficiency of large language models.

Thesis Supervisor: Jonathan Ragan-Kelley
Title: Esther & Harold E. Edgerton Assistant Professor

3

4

Acknowledgments

I am deeply grateful to my thesis advisors, Professor Jonathan Ragan-Kelley and

William Brandon, for their guidance, expertise, and continuous support throughout

this research journey. Their active participation in discussions, wealth of knowledge,

and inspiring ideas have been instrumental in shaping this work. I also deeply ap-

preciate the valuable professional advice and interesting discussions in the fields of

machine learning systems and compilers.

I would like to extend my heartfelt thanks to Aniruddha Nrusimha and Rameswar

Panda for their helpful discussions, which have provided valuable insights and broad-

ened my understanding of the subject matter. I am also immensely grateful to

Rameswar and the MIT-IBM Watson AI Lab for generously providing GPU resources

for this project.

I extend my gratitude to all the professors and teaching assistants at MIT whose

interesting classes and engaging lectures have taught me a lot and made me greatly

enjoy the field of computer science.

I would like to thank my friends who have made my time at MIT enjoyable

and memorable through their support, companionship, and our shared adventures.

Their presence has made this journey more meaningful, and I look forward to more

adventures together.

I am grateful to my family for their unconditional love and unwavering support.

To my parents, thank you for not only supporting my education but also inspiring

my passion in computer science. I am immensely grateful for the sacrifices you have

made to ensure that I had the best opportunities to learn and grow –– you have always

gone above and beyond to support my aspirations. I am grateful for the countless

conversations we have had, the guidance you have provided, and the unwavering faith

you have shown in my abilities.

To my grandparents, thank you for all the wonderful memories we have shared

during my childhood in Beijing. Those years were filled with joy, laughter, and

countless precious moments that have left an indelible mark on my heart. From

5

exploring the vibrant streets of Beijing to savoring delicious meals as a family, every

moment was infused with love and warmth.

To my brother Dougy Ouyang. Your fun-loving nature and vibrant personality

make you an absolute joy to be around, and your sense of humor has kept me mo-

tivated during the most challenging times –– your ability to make light of even the

most stressful moments is truly a blessing. I cherish the relationship we share. Thank

you for always being there for me and for making life brighter.

Lastly, I would like to express my appreciation to Gustav Mahler, whose music has

been a constant source of inspiration, solace, and motivation throughout my years at

MIT. Thank you, Gustav Mahler, for sharing your gift with the world and enriching

our lives through your music.

6

Contents

1 Introduction 17

1.1 Problem and Motivation . 17

1.2 Project Setup . 18

1.2.1 Architecture . 18

1.2.2 Compute Resources . 19

1.3 Contributions . 19

1.3.1 Main Takeaways . 19

1.4 Thesis Outline . 24

2 Analytical Model 25

2.1 Transformer and the GPT Architecture 25

2.1.1 Operation Breakdown and Naming Conventions 28

2.1.2 Model Family and Hyperparameters 29

2.2 Parameter Counting . 30

2.2.1 Parameters by Operation . 30

2.2.2 Parameter Distribution . 33

2.3 FLOPs Counting . 34

2.3.1 FLOPs by Operation . 34

2.3.2 FLOPs Scaling . 37

2.3.3 FLOPs Distribution . 38

2.4 Prefilling, Generation, and the KV Cache 41

2.4.1 Prefilling vs. Generation . 41

2.4.2 KV Cache and FLOPs . 42

7

2.4.3 KV Cache Tradeoffs . 45

2.5 Estimating Memory Usage . 46

2.5.1 Memory Components . 46

2.5.2 Activation by Operation . 46

2.5.3 Maximum Batch Size . 48

2.6 Speed of Light Latency . 49

2.6.1 FLOPs Latency . 49

2.6.2 Arithmetic Intensity . 50

2.6.3 Roofline Latency . 50

3 Inference with a Single GPU 53

3.1 Empirical Hardware Utilization . 53

3.1.1 Nvidia FasterTransformer Hardware Utilization 54

3.1.2 Comparing the Performance of Huggingface Transformers and

Nvidia FasterTransformer . 58

4 Inference with multiple GPUs 63

4.1 Parallelism Strategies . 63

4.1.1 Data Parallelism . 63

4.1.2 Model Parallelism . 64

4.1.3 Tensor Parallelism . 64

4.1.4 Pipeline Parallelism . 65

4.1.5 More on Parallelism . 65

4.2 Extending the Analytical Model to Multiple GPUs 66

4.2.1 Data Parallelism . 66

4.2.2 Tensor Parallelism . 66

4.2.3 Pipeline Parallelism . 67

4.2.4 Combining Pipeline and Tensor Parallelism 68

4.3 Multi-GPU Experiments . 69

4.3.1 Finding the Best Parallelism Strategy 70

8

5 Survey of Existing Transformer Frameworks 81

5.1 Other Parallelism and Model Sharding Strategies 81

5.1.1 Zero Redundancy Optimizer (ZeRO) 81

5.1.2 3D Parallelism . 82

5.1.3 CPU Offloading . 82

5.2 Other Frameworks and Implementations 83

5.2.1 FairScale . 83

5.2.2 Native PyTorch . 83

5.2.3 DeepSpeed . 84

5.2.4 Megatron-LM . 84

5.2.5 Megatron-DeepSpeed . 84

5.2.6 HuggingFace Transformers . 85

5.2.7 Parallelformers . 85

5.2.8 Huggingface Accelerate . 85

5.2.9 Facebook Fairseq . 85

5.2.10 Facebook Metaseq . 85

5.2.11 ByteDance LightSeq . 86

5.2.12 Tencent TurboTransformers 86

5.2.13 Alpa . 86

6 Conclusion 87

6.1 Summary . 87

6.2 Future Work . 88

9

10

List of Figures

2-1 Diagram of the GPT architecture from the GPT-2 Paper. The diagram

shows word and positional embeddings, repeated transformer blocks,

and downstream tasks. There are four components within the residual

block –– Multi-Headed Attention, Feed Forward, and two LayerNorms.

There are residual connections in both the MHA and the FFN parts

of the network. 26

2-2 Parameter distribution by operation for the OPT family of models

of different sizes from 125M to 175B. The distributions are shown as

percentages in the bar graph. 34

2-3 Number of FLOPs per token for the OPT family of models of different

sizes. 38

2-4 Number of FLOPs vs. sequence length for OPT-350M, up to the max-

imum supported sequence length (1024) 39

2-5 Number of FLOPs vs. sequence length for OPT-175B, up to the max-

imum supported sequence length (1024) 39

2-6 FLOPs distribution among operations with OPT-350M (small model)

and OPT-175B (big model) for short (10) and long (1000) sequence

lengths . 40

3-1 Analytical utilization (%) of OPT-1.3B during the prefilling stage for

various batch sizes and input sequence lengths 54

3-2 FLOPs utilization (%) of OPT-1.3B during the prefilling stage for var-

ious batch sizes and input sequence lengths 55

11

3-3 Analytical utilization (%) of OPT-1.3B during the generation stage for

various batch sizes and input sequence lengths 56

3-4 FLOPs utilization (%) of OPT-1.3B during the generation stage for

various batch sizes and input sequence lengths 57

12

List of Tables

1.1 Examples of known Large Language Models, their parameter counts,

and the time of release. 17

2.1 Hyperparameters and their notations for the GPT / OPT model ar-

chitecture. These notations will be used in the rest of the analyses in

this work. 30

2.2 OPT family of models and some of their hyperparameters: number of

repeated transformer blocks (layers), number of attention heads, and

the hidden dimension. 30

2.3 Parameter distribution for the OPT family of models by operation.

The operations are broken down as embeddings, attention KQV, at-

tention out, MLP, and layernorm . 33

2.4 Asymptotic analysis of the scaling of the number of FLOPs by opera-

tion with respect to batch size, hidden dimension, and sequence length. 37

2.5 Comparing the number of TFLOPs for prefilling and generation for the

same sequence length without using a KV-Cache. Using OPT 1.3b as

an example. 41

2.6 Comparing the number of TFLOPs during generation with a KV cache

vs. without a KV cache, using OPT-1.3b as an example. 44

2.7 Prefilling vs. Generation Latency with OPT-1.3b using Huggingface

Transformer . 45

3.1 Huggingface Transformers vs Nvidia FasterTransformer prefilling la-

tency for various batch size and input sequence length configurations 59

13

3.2 Huggingface Transformers vs Nvidia FasterTransformer generation la-

tency for various batch size and output sequence length configurations 61

4.1 MultiGPU latency experiments for OPT-1.3B with a small batch (4)

size and short input sequence length (20) during the prefilling stage. . 71

4.2 MultiGPU latency experiments for OPT-1.3B with a big batch size

(1000) and short input sequence length (20) during the prefilling stage. 71

4.3 MultiGPU latency experiments for OPT-1.3B with a small batch size

(4) and long input sequence length (1000) during the prefilling stage. 72

4.4 MultiGPU latency experiments for OPT-1.3B with a medium batch

size (128) and medium input sequence length (128) during the prefilling

stage. 72

4.5 MultiGPU latency experiments for OPT-1.3B with a small batch size

(4) and short output sequence length (20) during the generation stage. 73

4.6 MultiGPU latency experiments for OPT-1.3B with a big batch size

(1000) and short output sequence length (20) during the generation

stage. 74

4.7 MultiGPU latency experiments for OPT-1.3B with a small batch size

(4) and long output sequence length (1000) during the generation stage. 74

4.8 MultiGPU latency experiments for OPT-1.3B with a small batch size

(1) and long output sequence length (1000) during the generation stage. 74

4.9 MultiGPU latency experiments for OPT-1.3B with a medium batch

size (512) and medium output sequence length (256) during the gen-

eration stage. 75

4.10 MultiGPU latency experiments for OPT-13B with a small batch size

(4) and short input sequence length (20) during the prefilling stage. . 76

4.11 MultiGPU latency experiments for OPT-13B with a big batch size

(1000) and short input sequence length (20) during the prefilling stage. 76

4.12 MultiGPU latency experiments for OPT-13B with a small batch size

(4) and long input sequence length (1000) during the prefilling stage. 76

14

4.13 MultiGPU latency experiments for OPT-13B with a medium batch size

(128) and medium input sequence length (128) during the prefilling stage. 77

4.14 MultiGPU latency experiments for OPT-13B with a small batch size

(4) and short output sequence length (20) during the generation stage. 78

4.15 MultiGPU latency experiments for OPT-13B with a big batch size

(1000) and short output sequence length (20) during the generation

stage. 78

4.16 MultiGPU latency experiments for OPT-13B with a small batch size

(4) and long output sequence length (1000) during the generation stage. 79

4.17 MultiGPU latency experiments for OPT-13B with a medium batch size

(128) and medium output sequence length (128) during the generation

stage. 79

15

16

Chapter 1

Introduction

1.1 Problem and Motivation

State-of-the-art results on a wide variety of natural language processing tasks have

been obtained by scaling transformer-based language models; however, these models

that grow rapidly in size over the years have resulted in a high cost in computa-

tion resources. Table 1.1 includes examples of models, their sizes in the number of

parameters, and time of release.

Table 1.1: Examples of known Large Language Models, their parameter counts, and
the time of release.

Name Number of Parameters Time of Release
BERT Large [19] 340M October 2018
GPT-2 [22] 1.5B February 2019
Megatron-LM [20] 8.3B September 2019
T5 [23] 11B October 2019
Turing-NLG [17] 17B February 2020
GPT3 [18] 175B May 2020
Megatron-Turing NLG [25] 530B February 2022
OPT-175B [27] 175B May 2022
BLOOM [2] 176B June 2022

As the sizes of language models increase, deploying these models have become

difficult and expensive, and performance engineering efforts to improve the latency

17

and throughput of these models are crucial in enabling applications. It is important

to have not only efficient implementations that result in high hardware utilization on

a single accelerator but also effective parallelization across multiple accelerators.

For our project, we benchmarked existing transformer libraries such as Hugging-

Face Transformers and FasterTransformer from Nvidia for their inference latency for

different batch sizes and input and output sequence lengths. We also developed an an-

alytical performance model based on maximum hardware utilization as a comparison

baseline to analyze the efficiency of these libraries.

Most machine learning models in the past fit in the memory of a single GPU

without issues; however, as the models become more complex and larger, a single

GPU is no longer sufficient, and computation must move into the distributed space.

The opportunity to parallelize work across multiple machines enables performance

boosts, and, parallelization, combined with intelligent partitioning, allows us to use

large models that would otherwise be impossible to fit on a single GPU. Furthermore,

parallelizing models that fit in a single GPU can also offer performance benefits. We

used the analytical performance model along with multi-GPU experiments to explore

different parallelization strategies and developed recommendations for efficiently par-

allelizing transformer-based large language models for inference.

1.2 Project Setup

1.2.1 Architecture

We focused our project on GPT-style [22] decoder-only model architectures. Since

we do not have access to the GPT weights, we instead used the class of OPT (Open

Pre-trained Transformers) [27] models for our experiments since they come in a vari-

ety of sizes ranging from 125 million to 175 billion parameters, are publicly available,

and many existing implementations of transformer libraries support these model ar-

chitectures.

18

1.2.2 Compute Resources

We used the MIT Satori cluster [13] for running our experiments. Each node on

Satori has 4 V100 32GB memory GPU cards connected by an NVLink2 network that

supports 200GB/s bi-directional transfer, and the nodes are connected by a 100GB/s

Infiniband network with microsecond user space latency.

1.3 Contributions

We developed an analytical model based on peak hardware utilization to analyze

the performance of transformer inference for GPT-like architectures. The analytical

model was used in conjunction with empirical studies with existing frameworks to un-

derstand the state-of-the-art performance. Through a combination of these, we were

able to provide a comprehensive understanding of the performance characteristics and

trade-offs involved and develop recommendations for effective parallelization of large

language models. We hope that this thesis can guide researchers and practitioners in

optimizing the utilization of hardware resources and improving the efficiency of large

language models.

1.3.1 Main Takeaways

In this section, we describe some of the main observations and takeaways from this

work.

Parameter Counts

• In a transformer block, MLP parameters account for around 66% of the total,

and attention parameters account for around 33%.

• As model sizes get larger, the percentage of embedding parameters becomes

smaller since the parameters from the repeated transformer blocks will domi-

nate.

19

FLOP Counts

• Most operations scale linearly with sequence length and quadratically with the

hidden dimension. There are a few operations in the attention mechanism (QK,

multV, softmax) that scale quadratically with sequence length.

• The total number of FLOPs scales roughly linearly with the sequence length,

which suggests that the operations that scale quadratically with the sequence

length do not account for a significant part of the total FLOPs.

• the MLP operation contributes to most of the FLOPs.

• The KQV computations in the attention layers dominate most of the time,

followed by attention_out.

• The non-KQV computations, which scale quadratically with sequence length,

do not account for a significant number of FLOPs. In smaller models, they

account for around 10% at most and are negligible in larger models.

• The number of FLOPs spent on embeddings becomes a less significant fraction

as the model gets larger.

Prefilling vs. Generation

• For generation, the number of FLOPs for generation grows quadratically as

the sequence length increases, and it can be more than 2 orders of magnitude

greater than prefilling for the same sequence length.

• When using a KV cache, the number of FLOPs for generation becomes roughly

the same as the number of FLOPs for prefilling for a given sequence length.

However, in practice, we will see that generation is still a lot slower than pre-

filling for the same sequence length even if we are using a KV cache due to low

arithmetic intensity operations.

20

Hardware Utilization with Huggingface Transformers and Nvidia Faster-

Transformer – Single GPU

Prefilling

• The shapes of the analytical utilization and FLOPS utilization curves look very

similar, and for each (batch size, sequence length) data point, the FLOPs utiliza-

tion is only lower than the analytical utilization by a few percent. This means

that the prefilling stage workloads generally have high arithmetic intensity.

• As the sequence length increases, the analytical utilization for all batch sizes

converges to around 46%, and the FLOPs utilization for all batch sizes converges

to around 42%.

• For almost all batch sizes (except batch size 1), both the FLOPs and analytical

utilization peak at a sequence length of around 128 - 256, which is about 10% -

20% of the maximum context length. The utilization decreases as the sequence

lengths grow longer than that range.

• The highest FLOPs utilization we observed for prefilling is 78% for batch size

1024 and input sequence length 16. The highest analytical utilization we ob-

served for prefilling is 81% also for batch size 1024 and input sequence length

16. This indicates that the implementation of Nvidia FasterTransformer is rea-

sonably efficient at utilizing the hardware.

• For most of the different (batch size, input sequence length) configurations, the

ratio of the HFT latency to the FT latency is about 1.5, which indicates that

Huggingface Transformer is 1.5x slower than Nvidia FasterTransformer for most

of the prefilling workloads.

• Workloads with small batch sizes and short sequence lengths have a higher ratio

since they have fewer compute-bound matrix multiplication operations. The

latency of the matrix multiplication operations should not be too different for

Huggingface Transformers and Nvidia Transformer, since they should both be

21

using optimized CUDA kernels for matrix multiplication, which is a well-studied

problem.

• Huggingface Transformers runs out of memory earlier than Nvidia FasterTrans-

former, as indicated by "N/A"s in Table 3.1. This indicates that FT is more

efficient at memory usage than HFT.

Generation

• Unlike the prefilling stage, the shapes of the FLOPs and analytical utilization

curves are very different. The FLOPs utilization is quite low while the analyti-

cal utilization is reasonably high. This is consistent with our analysis that the

operations in the generation stage are mostly memory bound (compute bound

operations would show similar FLOPs and analytical utilization). From this

disparity in FLOPs vs analytical utilization, we can also conclude that the im-

plementation of Nvidia FasterTransformer is also reasonably efficient at utilizing

the hardware, but we are limited by the memory-bound operations to achieve

a high FLOPs utilization.

• The FLOPs utilization decreases for all batch sizes as the sequence length in-

creases. This is consistent with our analysis that the autoregressive generation

steps are memory bound. With more generation steps, the FLOPs utilization

decreases as there are more memory bound operations. Overall, the generation

FLOPs utilization is quite low.

• The analytical utilization becomes higher as the sequence length grows longer

for all batch sizes.

• The ratio HFT / FT Latency ratio decreases as we increase the batch size.

This is consistent with our expectation that operations with higher arithmetic

intensity will show a smaller gap between the latency of the different implemen-

tations.

• With the same batch size, the HFT / FT Latency ratio is similar.

22

• For the different (batch size, input sequence length) configurations, the ratio

of the HFT latency to the FT latency does not stay fairly constant as in the

prefilling case. It is around 3 for most of the workloads, indicating that HFT is

less efficient than FT at the generation stage.

• Compared to prefilling, both HFT and FT are able to support larger batch size

and sequence length combinations. We think this is because in the attention

operation when using a KV cache during generation, we save on some of the

matrices with sequence length as dimensions since some of them will become 1

with the KV cache.

Multi-GPU Inference

Model Fits in a Single GPU

• There is no reason to use model parallelism during the prefilling stage to min-

imize latency if the model fits in a single GPU. Data parallelism is useful for

decreasing latency.

• In the generation stage, using tensor parallelism in small batch settings is benefi-

cial for decreasing latency; however, this doesn’t scale infinitely. As the commu-

nication costs of tensor parallelism grow quickly, we will hit diminishing returns

for using GPUs for tensor parallelism until eventually the communication over-

head exceeds the computation savings. In large batch settings, data parallelism

by replicating the model is best for minimizing latency.

Model Doesn’t Fit in a Single GPU

• For prefilling, to minimize latency, tensor parallelize the model on as few GPUs

as possible and then replicate the same model and parallelization strategy across

the remaining GPUs. This is a generalization of the case where the model fits in

a single GPU –– if a model fits in 𝑁 GPUs, tensor parallelize across 𝑁 GPUs.

Replicate the model and use the same parallelization strategy combined with

23

data parallelism on the remaining GPUs if the total number of GPUs is a factor

of 𝑁 .

• In the generation stage, for small batch sizes, tensor parallelism on as many

GPUs as possible is useful for minimizing latency. In large batch settings, if

a model fits in at least 𝑁 GPUs, pipeline parallelize across exactly 𝑁 GPUs.

Replicate the model and use the same parallelization strategy combined with

data parallelism on all the remaining GPUs.

1.4 Thesis Outline

Chapter 2 describes the architecture we are focusing on and the implementation of

the analytical model, including counting parameters, counting FLOPs, differentiating

between the prefilling and generation stage during inference, using a KV cache, esti-

mating the activation memory and maximum supported batch size, and estimating

the speed of light latency in two modes –– either using only FLOPs or with a roofline

model that takes into account memory-boundedness. In addition to describing the

analytical model, Chapter 2 also includes takeaways and results obtained with the

analytical model. Chapter 3 shows the results of transformer inference empirically

with 2 different libraries (Huggingface Transformers, Nvidia FasterTransformer) and

getting their hardware utilization, as well as comparing the two implementations.

Chapter 4 describes the different parallelism strategies for transformer inference, ex-

tends the analytical model to a multi-GPU setting, summarizes the results of running

multi-GPU inference empirically, and provides recommendations on efficiently paral-

lelizing transformer inference for different workloads. Chapter 5 describes additional

parallelism strategies not explored in our work and surveys other existing frameworks

for transformer inference or model parallelism. Chapter 6 summarizes the results and

describes the future directions of this work.

24

Chapter 2

Analytical Model

2.1 Transformer and the GPT Architecture

Transformers are a type of neural network architecture used in a variety of natu-

ral language processing (NLP) tasks. They were first introduced in the 2017 paper

"Attention is All You Need" [26] and have since become a key component of many

state-of-the-art NLP systems. There are many pretrained language models based on

transformers. We will be focusing our analyses on the decoder-only GPT [22] fam-

ily of models; however, since the GPT models are not available to the public, we

will be instead using OPT [27], which is a family of open-sourced models that are

architecturally similar to GPT and thus have similar performance characteristics.

The following equations are from the GPT paper [22] describing the model archi-

tecture. As shown in Figure 2-1, the model consists of text and position embedding

operations, followed by repeated transformer blocks, and then a downstream task.

Each transformer block has a multi-headed self attention operation, a layer norm

operation, a fully connected feed-forward network, and another layer norm operation.

25

Figure 2-1: Diagram of the GPT architecture from the GPT-2 Paper. The diagram
shows word and positional embeddings, repeated transformer blocks, and downstream
tasks. There are four components within the residual block –– Multi-Headed Atten-
tion, Feed Forward, and two LayerNorms. There are residual connections in both the
MHA and the FFN parts of the network.

26

ℎ0 = 𝑈𝑊𝑒 +𝑊𝑝

ℎ𝑙 = transformer_block(ℎ𝑙−1)∀𝑖 ∈ [1, 𝑛]

𝑃 (𝑢) = softmax(ℎ𝑛𝑊
𝑇
𝑒)

𝑈 = (𝑢−𝑘, ..., 𝑢−1) is the context vector of tokens, 𝑛 is the number of repeated trans-

former blocks, 𝑊𝑒 ∈ is the token embedding matrix, and 𝑊𝑝 is the positional embed-

ding matrix.

Transformer Block

Multi-Headed Attention (MHA): From the equations in the paper "Attention

is All You Need" [26] that introduced the transformer architecture, the multi-head

attention mechanism is described as

multihead(𝑄,𝐾, 𝑉) = concat(head_1, ..., head_h)𝑊𝑂

where

head_i = attention(𝑋𝑊𝑄
𝑖 , 𝑋𝑊𝐾

𝑖 , 𝑋𝑊 𝑉
𝑖)

and

attention(𝑄,𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√
𝑑𝑘

)𝑉

Feed Forward: The feedforward operation is a two-layer multi-layer perceptron

(MLP)

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2

27

2.1.1 Operation Breakdown and Naming Conventions

This subsection breaks down the transformer operations and defines the naming con-

ventions that will be used in the rest of the analysis.

word_embedding and positional_embedding

ℎ0 = 𝑈𝑊𝑒 +𝑊𝑝

Our analysis of the positional embedding will be mostly agnostic to the specific strat-

egy used and we will model it as an operation proportional to the size of the 𝑊𝑝

matrix.

attention_K

𝐾𝑖 = 𝑋 *𝑊𝐾
𝑖

attention_V

𝑉𝑖 = 𝑋 *𝑊 𝑉
𝑖

attention_Q

𝑄𝑖 = 𝑋 *𝑊𝑄
𝑖

attention_QK

𝑄 *𝐾𝑇

attention_softmax

softmax(
𝑄𝐾𝑇

√
𝑑𝑘

)

28

attention_multV

softmax(
𝑄𝐾𝑇

√
𝑑𝑘

)𝑉

attention_out

concat(head_1, ..., head_h)𝑊𝑂

layernorm

LayerNorm(𝑋)

We do not make a distinction between the layernorm after the attention block and

the layernorm after the MLP block in our analysis, since they will be doing the same

operations on inputs of the same size.

mlp1 This is the expansion that expands the hidden dimension from 𝑑𝑚𝑜𝑑𝑒𝑙 to 𝑑𝑓𝑓

𝑋𝑊1 + 𝑏1

mlp2 This is the contraction that brings the hidden dimension back to 𝑑𝑚𝑜𝑑𝑒𝑙

𝑚𝑎𝑥(0, 𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2

2.1.2 Model Family and Hyperparameters

The GPT and OPT families of models consist of models with varying numbers of

heads, layers, embedding sizes. These hyperparameters are summarized in Table 2.1,

and these notations will be the convention for the rest of the analysis.

In the GPT (GPT-2) and OPT architectures

• 𝑛𝑣𝑜𝑐𝑎𝑏 = 50257

• 𝑛𝑐𝑡𝑥 = 1024

29

Table 2.1: Hyperparameters and their notations for the GPT / OPT model architec-
ture. These notations will be used in the rest of the analyses in this work.

Notation Description
𝑛𝑣𝑜𝑐𝑎𝑏 Vocab size
𝑛𝑐𝑡𝑥 Maximum sequence length
𝑛𝑙𝑎𝑦𝑒𝑟 Number of times the transformer block is repeated
𝑛ℎ𝑒𝑎𝑑 Number of heads
𝑑𝑚𝑜𝑑𝑒𝑙 Attention embedding size
𝑑𝑘, 𝑑𝑣, 𝑑ℎ𝑒𝑎𝑑 Attention weights sizes
𝑑𝑓𝑓 Feedforward embedding size

Table 2.2: OPT family of models and some of their hyperparameters: number of
repeated transformer blocks (layers), number of attention heads, and the hidden
dimension.

Model 𝑛𝑙𝑎𝑦𝑒𝑟 𝑛ℎ𝑒𝑎𝑑 𝑑𝑚𝑜𝑑𝑒𝑙

opt-125m 12 12 768
opt-350m 24 16 1024
opt-1.3b 24 32 2048
opt-2.7b 32 32 2560
opt-6.7b 32 32 4096
opt-13b 40 40 5120
opt-30b 48 56 7168
opt-66b 64 72 9216
opt-175b 96 96 12288

• 𝑑𝑘 = 𝑑𝑣 = 𝑑ℎ𝑒𝑎𝑑 = 𝑑𝑚𝑜𝑑𝑒𝑙/𝑛ℎ𝑒𝑎𝑑

• 𝑑𝑓𝑓 = 4 * 𝑑𝑚𝑜𝑑𝑒𝑙

2.2 Parameter Counting

2.2.1 Parameters by Operation

Following our conventions of breaking down the operations, and omitting those with-

out parameters associated with them, we can t

30

word_embedding 𝑊𝑒 : 𝑛𝑣𝑜𝑐𝑎𝑏 * 𝑑𝑚𝑜𝑑𝑒𝑙

positional_embedding: 𝑊𝑝 : 𝑛𝑐𝑡𝑥 * 𝑑𝑚𝑜𝑑𝑒𝑙

Each repeated transformer block has its own set of weights, and each of the atten-

tion heads (𝑖) has the weights matrices 𝑊𝐾
𝑖 , 𝑊𝑄

𝑖 , 𝑊 𝑉
𝑖 associated with constructing

its own 𝐾, 𝑄, 𝑉 matrices. In each transformer block, the heads are concatenated

and then multiplied by 𝑊𝑜 to get the attention output projection.

attention_K: 𝑊𝐾
𝑖 : 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 per head per transformer block (layer)

attention_V: 𝑊 𝑉
𝑖 : 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑣 per head per layer

attention_Q: 𝑊𝑄
𝑖 : 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 per head per layer

attention_out: 𝑊𝑄
𝑖 : 𝑛ℎ𝑒𝑎𝑑 * 𝑑𝑣 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layer

layernorm: 2 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layernorm operation per layer

There are 2 layernorms per transformer block. The parameters consist of the scale

factor and offset, each of size 𝑑𝑚𝑜𝑑𝑒𝑙.

We will ignore the bias for the MLPs, since they are vectors of negligible size

compared to the weight matrices.

mlp1: 𝑊1 : 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑓𝑓

mlp2: 𝑊2 : 𝑑𝑓𝑓 * 𝑑𝑚𝑜𝑑𝑒𝑙

31

The embedding weights (positional and word) have a total size of

word_embedding + positional_embedding

= 𝑛𝑣𝑜𝑐𝑎𝑏 * 𝑑𝑚𝑜𝑑𝑒𝑙 + 𝑛𝑐𝑡𝑥 * 𝑑𝑚𝑜𝑑𝑒𝑙

= (𝑛𝑣𝑜𝑐𝑎𝑏 + 𝑛𝑐𝑡𝑥) * 𝑑𝑚𝑜𝑑𝑒𝑙

Summing across transformer blocks, the LayerNorm weights have a total size of

2 * 2 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

= 4 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

Summing across attention heads and transformer blocks, the attention weights

have a total size of

((attention_K + attention_V + attention_Q) * 𝑛ℎ𝑒𝑎𝑑 + attention_out) * 𝑛𝑙𝑎𝑦𝑒𝑟

= ((𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 + 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑣 + 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘) * 𝑛ℎ𝑒𝑎𝑑 + 𝑛ℎ𝑒𝑎𝑑 * 𝑑𝑣 * 𝑑𝑚𝑜𝑑𝑒𝑙) * 𝑛𝑙𝑎𝑦𝑒𝑟

= (3 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑ℎ𝑒𝑎𝑑) * 𝑛ℎ𝑒𝑎𝑑 + 𝑛ℎ𝑒𝑎𝑑 * 𝑑ℎ𝑒𝑎𝑑 * 𝑑𝑚𝑜𝑑𝑒𝑙) * 𝑛𝑙𝑎𝑦𝑒𝑟

= 4 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

Summing across transformer blocks, the MLP weights have a total size of

(mlp1 + mlp2) * 𝑛𝑙𝑎𝑦𝑒𝑟

= (𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑓𝑓 + 𝑑𝑓𝑓 * 𝑑𝑚𝑜𝑑𝑒𝑙) * 𝑛𝑙𝑎𝑦𝑒𝑟

= (2 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 4 * 𝑑𝑚𝑜𝑑𝑒𝑙) * 𝑛𝑙𝑎𝑦𝑒𝑟

= 8 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

32

Table 2.3: Parameter distribution for the OPT family of models by operation. The
operations are broken down as embeddings, attention KQV, attention out, MLP, and
layernorm

Model Word Emb. Positional Emd. Attn K,Q,V Attn Out MLP LayerNorm
opt-125m 3.86E+07 7.86E+05 2.12E+07 7.08E+06 5.66E+07 3.69E+04
opt-350m 5.15E+07 1.05E+06 7.55E+07 2.52E+07 2.01E+08 9.83E+04
opt-1p3b 1.03E+08 2.10E+06 3.02E+08 1.01E+08 8.05E+08 1.97E+05
opt-2p7b 1.29E+08 2.62E+06 6.29E+08 2.10E+08 1.68E+09 3.28E+05
opt-6p7b 2.06E+08 4.19E+06 1.61E+09 5.37E+08 4.29E+09 5.24E+05
opt-13b 2.57E+08 5.24E+06 3.15E+09 1.05E+09 8.39E+09 8.19E+05
opt-30b 3.60E+08 7.34E+06 7.40E+09 2.47E+09 1.97E+10 1.38E+06
opt-66b 4.63E+08 9.44E+06 1.63E+10 5.44E+09 4.35E+10 2.36E+06
opt-175b 6.18E+08 1.26E+07 4.35E+10 1.45E+10 1.16E+11 4.72E+06

Adding up the components, the total number of parameters is

embeddings + attention + mlp + layernorm

= (𝑛𝑣𝑜𝑐𝑎𝑏 + 𝑛𝑐𝑡𝑥) * 𝑑𝑚𝑜𝑑𝑒𝑙 + 4 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟 + 8 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟 + 4 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

= 12 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟 + (𝑛𝑣𝑜𝑐𝑎𝑏 + 𝑛𝑐𝑡𝑥) * 𝑑𝑚𝑜𝑑𝑒𝑙 + 4 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

2.2.2 Parameter Distribution

Table 2.3 summarizes the distribution of parameters among the different components

for OPT models of different sizes, and Figure 2-2 shows the breakdown by percentage.

We can make several observations here:

1. LayerNorm contributes a negligible number of parameters

2. As model sizes get larger, the percentage of embedding parameters becomes

smaller, since the parameters from the repeated transformer blocks will domi-

nate

3. In a transformer block, MLP parameters account for around 66% of the total,

and attention parameters account for around 33%.

33

Figure 2-2: Parameter distribution by operation for the OPT family of models of
different sizes from 125M to 175B. The distributions are shown as percentages in the
bar graph.

2.3 FLOPs Counting

Similar to analyzing the parameter count and breakdown, we will now proceed to

analyze the number of floating point operations (FLOPs) in transformer inference.

We will base our calculations on the assumption that for a matrix multiplication

operation 𝐶[𝑀,𝐾] = 𝐴[𝑀,𝑁] *𝐵[𝑁,𝐾], the number of flops is 2𝑀𝑁𝐾. In addition

to our previously defined notations, we will use 𝐵 to denote the batch size (the number

of sequences processed in parallel), and 𝑠 to denote the sequence length.

2.3.1 FLOPs by Operation

This section analyzes the FLOPs count by operation.

word_embedding 𝑋 *𝑊𝑒 : 2 *𝐵 * 𝑠 * 𝑛𝑣𝑜𝑐𝑎𝑏 * 𝑑𝑚𝑜𝑑𝑒𝑙

positional_embedding: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙

34

We assume this is a fixed-representation of position such as the sinusoidal repre-

sentation. As a result, we model the number of FLOPs as a constant factor times the

shape of the positional embedding weights: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙

attention_K: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 per head per transformer block (layer)

attention_V: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑣 per head per layer

attention_Q: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 per head per layer

attention_QK: 2 *𝐵 * 𝑠 * 𝑑ℎ𝑒𝑎𝑑 * 𝑠 per head per layer

attention_softmax: 3 *𝐵 * 𝑠 * 𝑠 per head per layer We model this as a constant

factor (3) times the size of the matrix to which softmax is being applied.

attention_multV: 2 *𝐵 * 𝑠 * 𝑠 * 𝑑ℎ𝑒𝑎𝑑 per head per layer

attention_out: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layer

layernorm: 5 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layernorm per layer

We model layernorm as performing 5 FLOPs on each element in the input

mlp1: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑓𝑓 per layer

mlp2: 2 *𝐵 * 𝑠 * 𝑑𝑓𝑓 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layer

35

The total number of FLOPs of the embeddings (positional and word) is

word_embedding + positional_embedding

= 2 *𝐵 * 𝑠 * 𝑛𝑣𝑜𝑐𝑎𝑏 * 𝑑𝑚𝑜𝑑𝑒𝑙 + 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙

= 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * (𝑛𝑣𝑜𝑐𝑎𝑏 + 1)

The total number of FLOPs for the layernorm operations

layernorm * 2 * 𝑛𝑙𝑎𝑦𝑒𝑟

= 5 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 2 * 𝑛𝑙𝑎𝑦𝑒𝑟

= 10 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

The total number of FLOPs for attention:

((attention_K + attention_V + attention_Q + attention_QK+

attention_softmax + attention_multV) * 𝑛ℎ𝑒𝑎𝑑 + attention_out) * 𝑛𝑙𝑎𝑦𝑒𝑟

= ((2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 + 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑣 + 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 + 2 *𝐵 * 𝑠 * 𝑑ℎ𝑒𝑎𝑑 * 𝑠+

2 *𝐵 * 𝑠 * 𝑠+ 2 *𝐵 * 𝑠 * 𝑠 * 𝑑ℎ𝑒𝑎𝑑) * 𝑛ℎ𝑒𝑎𝑑 + 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑚𝑜𝑑𝑒𝑙) * 𝑛𝑙𝑎𝑦𝑒𝑟

= (6 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑ℎ𝑒𝑎𝑑 * 𝑛ℎ𝑒𝑎𝑑 + 4 *𝐵 * 𝑠2 * 𝑑𝑚𝑜𝑑𝑒𝑙 + 2 *𝐵 * 𝑠2 + 2 *𝐵 * 𝑠 * 𝑑2𝑚𝑜𝑑𝑒𝑙) * 𝑛𝑙𝑎𝑦𝑒𝑟

= (8 *𝐵 * 𝑠 * 𝑑2𝑚𝑜𝑑𝑒𝑙 + 4 *𝐵 * 𝑠2 * 𝑑𝑚𝑜𝑑𝑒𝑙 + 2 *𝐵 * 𝑠2) * 𝑛𝑙𝑎𝑦𝑒𝑟

The total number of FLOPs for the MLPs:

(mlp1 + mlp2) * 𝑛𝑙𝑎𝑦𝑒𝑟

= (2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑓𝑓 + 2 *𝐵 * 𝑠 * 𝑑𝑓𝑓 * 𝑑𝑚𝑜𝑑𝑒𝑙) * 𝑛𝑙𝑎𝑦𝑒𝑟

= (4 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 4 * 𝑑𝑚𝑜𝑑𝑒𝑙) * 𝑛𝑙𝑎𝑦𝑒𝑟

= 16 *𝐵 * 𝑠 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

36

Table 2.4: Asymptotic analysis of the scaling of the number of FLOPs by operation
with respect to batch size, hidden dimension, and sequence length.

Operation Batch Size 𝐵 Hidden Dimension 𝑑𝑚𝑜𝑑𝑒𝑙 Sequence Length 𝑠
word_embedding 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)
positional_embedding 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)
attention_K 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛)
attention_V 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛)
attention_Q 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛)
attention_QK 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛2)
attention_softmax 𝑂(𝑛) 𝑂(1) 𝑂(𝑛2)
attention_multV 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛2)
attention_out 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛)
layernorm 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛)
mlp1 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛)
mlp2 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛)

Adding up the components, the total number of FLOPs is:

embeddings + attention + mlp + layernorm

= 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * (𝑛𝑣𝑜𝑐𝑎𝑏 + 1) + (8 *𝐵 * 𝑠 * 𝑑2𝑚𝑜𝑑𝑒𝑙 + 4 *𝐵 * 𝑠2 * 𝑑𝑚𝑜𝑑𝑒𝑙 + 2 *𝐵 * 𝑠2) * 𝑛𝑙𝑎𝑦𝑒𝑟

+ 16 *𝐵 * 𝑠 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟 + 10 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

= 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * (𝑛𝑣𝑜𝑐𝑎𝑏 + 1) + 28 *𝐵 * 𝑠 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

+ (4 *𝐵 * 𝑠2 * 𝑑𝑚𝑜𝑑𝑒𝑙 + 2 *𝐵 * 𝑠2) * 𝑛𝑙𝑎𝑦𝑒𝑟 + 10 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

2.3.2 FLOPs Scaling

We analyzed how the number of FLOPs scale in each operation in response to scal-

ing the batch size, the hidden dimension, and the sequence length. The analytical

summary is shown in Table 2.4.

For the OPT models of different hidden dimension sizes 𝑑𝑚𝑜𝑑𝑒𝑙 and different num-

ber of layers 𝑛𝑙𝑎𝑦𝑒𝑟, with 𝐵 = 1, and 𝑠 = 1, the total number of FLOPs scales roughly

linearly with the product of 𝑛𝑙𝑎𝑦𝑒𝑟 and 𝑑𝑚𝑜𝑑𝑒𝑙.

For the OPT class of models, the maximum sequence length is 1024. For models

37

Figure 2-3: Number of FLOPs per token for the OPT family of models of different
sizes.

below 350m parameters, the hidden dimension 𝑑𝑚𝑜𝑑𝑒𝑙 is smaller than the maximum

sequence length. For bigger models, 𝑑𝑚𝑜𝑑𝑒𝑙 is greater than the maximum sequence

length. Figures 2-4 and 2-5 examine the total number of FLOPs for both types of

models as we vary the sequence length.

For both models, the total number of FLOPs scale roughly linearly with the

sequence length, which suggests that the operations that scale quadratically with the

sequence length do not account for a significant part of the total FLOPs, and the

operations that scale linearly with the sequence length dominate.

2.3.3 FLOPs Distribution

Since the number of flops in all the individual operations scale linearly with the batch

size, varying the batch size would not affect the distribution of FLOPs in a transformer

inference workflow. Changing the hidden dimension and the sequence length, on the

other hand, would change the distribution of FLOPs among the operations. Here we

38

Figure 2-4: Number of FLOPs vs. sequence length for OPT-350M, up to the maxi-
mum supported sequence length (1024)

Figure 2-5: Number of FLOPs vs. sequence length for OPT-175B, up to the maximum
supported sequence length (1024)

39

show the distribution of FLOPs for two models (opt-350m and opt-175b) with a short

sequence length (10) and a long sequence length (1000) in Figure 2-6.

Figure 2-6: FLOPs distribution among operations with OPT-350M (small model)
and OPT-175B (big model) for short (10) and long (1000) sequence lengths

We can make several observations here:

1. The MLP operation contributes to most of the FLOPs.

2. The KQV computations in the attention layers dominate most of the time,

followed by attention_out.

3. The attention_other operations, which scale quadratically with sequence length,

do not account for a significant number of FLOPs. In smaller models, they ac-

count for around 10% at most and are negligible in larger models.

4. The number of FLOPs spent on embeddings becomes a less significant fraction

as the model gets larger.

The FLOPs analyses here only apply to the prefilling stage. The FLOPs analyses

40

Table 2.5: Comparing the number of TFLOPs for prefilling and generation for the
same sequence length without using a KV-Cache. Using OPT 1.3b as an example.

seq len prefilling TFLOPs generation TFLOPs ratio
201 0.4936853814 49.09933064 99.45469825
401 1.000867359 198.0358043 197.864185
601 1.523962297 449.992013 295.2776549
801 2.062970194 808.1505488 391.7412627

for the generation stage will be discussed in the next section which also discusses the

usage of the KV cache.

2.4 Prefilling, Generation, and the KV Cache

2.4.1 Prefilling vs. Generation

A generative LLM inference task has two stages –– the prefilling and the generation

stage.

In the prefilling stage, the input prompt with a sequence length of 𝑠𝑖𝑛 tokens is

processed in one forward pass and the KV cache is computed. In the generation stage,

the tokens are generated one at a time, since each of the generated tokens depends

on the previous tokens. As a result, for an output sequence of sequence length 𝑠𝑜𝑢𝑡,

𝑠𝑜𝑢𝑡 forward passes are required, and in each iteration, the sequence length increases

by 1 from 𝑠𝑖𝑛 + 1 to 𝑠𝑖𝑛 + 𝑠𝑜𝑢𝑡. The KV cache is also updated in each iteration of the

generation phase, with the stored 𝐾 and 𝑉 matrices for each head growing larger by

1 * 𝑑𝑘, 1 * 𝑑𝑣 respectively.

As a result of this autoregressive generation, for a given sequence length 𝑠, gener-

ating 𝑠 output tokens takes a lot more FLOPs than processing 𝑠 input tokens. Using

the opt-1.3b model as an example, Table 2.5 shows the number of FLOPs required

for generating or prefilling 𝑠 tokens for varying 𝑠.

The number of FLOPs for generation grows quadratically as the sequence length

increases, and it can be more than 2 orders of magnitude greater than prefilling for

41

the same sequence length.

2.4.2 KV Cache and FLOPs

In the generation stage, we can save some of the recomputations on the entire sequence

and only process the new token. The "KV cache" saves the past computations of 𝐾𝑖

and 𝑉𝑖 for each layer 𝑖. As a result, in each generation iteration, we only need to

compute the new addition to 𝐾 and 𝑉 based on the newly added token 𝑡 with shape

[𝐵, 1, 𝑑𝑚𝑜𝑑𝑒𝑙] instead of computing the entire sequence with shape [𝐵, 𝑠+ 1, 𝑑𝑚𝑜𝑑𝑒𝑙].

Let 𝑠 be the sequence length (including the new token) of the current iteration.

The number of FLOPs based on only computing this one additional token is as follows:

attention_K

𝐾𝑖 = concat(𝐾𝑖, 𝑡 · 𝑤𝐾
𝑖)

Shapes: 𝑡: [𝐵, 1, 𝑑𝑚𝑜𝑑𝑒𝑙]; 𝑊𝐾
𝑖 : [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑘]; 𝐾𝑖: [𝐵, 𝑠, 𝑑𝑘]

Number of FLOPs: 2 *𝐵 * 1 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 per head per layer

attention_V

𝑉𝑖 = concat(𝑉𝑖, 𝑡 · 𝑤𝑉
𝑖)

Shapes: 𝑡: [𝐵, 1, 𝑑𝑚𝑜𝑑𝑒𝑙]; 𝑊 𝑉
𝑖 : [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑣]; 𝑉𝑖: [𝐵, 𝑠, 𝑑𝑣]

Number of FLOPs: 2 *𝐵 * 1 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑣 per head per layer

attention_Q

𝑡𝑄𝑖 = 𝑡 *𝑊𝑄
𝑖

Shapes: 𝑡: [𝐵, 1, 𝑑𝑚𝑜𝑑𝑒𝑙]; 𝑊𝑄
𝑖 : [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑘]; 𝑡𝑄𝑖 : [𝐵, 1, 𝑑𝑘]

Number of FLOPs: 2 *𝐵 * 1 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑘 per head per layer

42

attention_QK

𝑡𝑄𝑖 *𝐾𝑇

Shapes: 𝑡𝑄𝑖 : [𝐵, 1, 𝑑ℎ𝑒𝑎𝑑]; 𝐾𝑇 : [𝐵, 𝑑ℎ𝑒𝑎𝑑, 𝑠]

Number of FLOPs: 2 *𝐵 * 1 * 𝑑ℎ𝑒𝑎𝑑 * 𝑠 per head per layer

attention_softmax

softmax(
𝑡𝑄𝐾𝑇

√
𝑑𝑘

)

Shapes: 𝑡𝑄𝐾𝑇 : [𝐵, 1, 𝑠]

Number of FLOPs: 3 *𝐵 * 1 * 𝑠 FLOPs per head per layer

attention_multV

softmax(
𝑡𝑄𝐾𝑇

√
𝑑𝑘

)𝑉

Shapes: (𝑡𝑄 *𝐾𝑇): [𝐵, 1, 𝑠]; 𝑉 : [𝐵, 𝑠, 𝑑ℎ𝑒𝑎𝑑]

Number of FLOPs: 2 *𝐵 * 1 * 𝑠 * 𝑑ℎ𝑒𝑎𝑑 per head per layer

attention_out

concat(head_1, ..., head_h)𝑊𝑂

Shapes: 𝑈 = concat(head_1, ..., head_h): [𝐵, 1, 𝑑𝑚𝑜𝑑𝑒𝑙]; 𝑊𝑂: [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑚𝑜𝑑𝑒𝑙]

Number of FLOPs: 2 *𝐵 * 1 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layer

43

Table 2.6: Comparing the number of TFLOPs during generation with a KV cache vs.
without a KV cache, using OPT-1.3b as an example.

Seq Len Gen TFLOPs with KV Cache Gen TFLOPs without KV Cache Percentage
201 0.492121728 49.09933064 1.002298242
401 1.002030336 198.0358043 0.5059844302
601 1.529725824 449.992013 0.3399451056
801 2.075208192 808.1505488 0.2567848522

mlp1

𝑡𝑊1 + 𝑏1

Shapes: 𝑡: [𝐵, 1, 𝑑𝑚𝑜𝑑𝑒𝑙]; 𝑊1: [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑓𝑓]

Number of FLOPS: 2 *𝐵 * 1 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑑𝑓𝑓 per layer

mlp2

𝑡𝑊2 + 𝑏2

Shapes: 𝑡: [𝐵, 1, 𝑑𝑚𝑜𝑑𝑒𝑙]; 𝑊2: [𝑑𝑓𝑓 , 𝑑𝑚𝑜𝑑𝑒𝑙]

Number of FLOPS: 2 *𝐵 * 1 * 𝑑𝑓𝑓 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layer

The layernorm operations will have the same number of FLOPs as without using

KV cache. And the final output will be concatenated to 𝑋 for the next iteration.

When using the KV cache, the number of FLOPs in generation is less than 1% of

the number of FLOPs when not using the KV cache, as shown in Table 2.6

Furthermore, with the KV cache, the number of FLOPs for generation becomes

roughly the same as the number of FLOPs for prefilling for a given sequence length

𝑠. However, in practice, we will see that generation is still a lot slower than prefilling

for the same sequence length even if we are using a KV cache, as shown in Table 2.7

(the latency numbers in this table are obtained from running the opt-1.3b model with

44

Table 2.7: Prefilling vs. Generation Latency with OPT-1.3b using Huggingface Trans-
former

Batch Size Sequence Length Prefilling Latency (ms) Generation Latency (ms)
1 128 29.40297127 2754.386663
1 256 30.16424179 5513.639212
1 512 33.46157074 11039.16216
1 1000 74.98526573 21547.35923
16 16 4.95542757 385.1943016
16 128 40.01406281 3037.932634
16 256 80.87530793 6082.014799
16 512 165.139345 12195.14251
16 1000 335.1545119 24587.50057

the HuggingFace Transformer library). This is due to the differences in arithmetic

intensity and will be investigated in a later section.

2.4.3 KV Cache Tradeoffs

Using the KV cache is essentially a tradeoff between memory and compute. Using the

KV cache avoids recomputing the K and V matrices at every token, but it requires

caching these matrices in memory. The size of the KV cache is the total size of all

the 𝐾 and 𝑉 matrices at maximum sequence length 𝑠𝑖𝑛+ 𝑠𝑜𝑢𝑡 in all layers. Using the

KV cache is a tradeoff between memory and compute in which the amount of extra

memory used can be computed as

(size of K + size of V) * 𝑛ℎ𝑒𝑎𝑑 * 𝑛𝑙𝑎𝑦𝑒𝑟

= (𝐵 * (𝑠𝑖𝑛 + 𝑠𝑜𝑢𝑡) * 𝑑𝑘 +𝐵 * (𝑠𝑖𝑛 + 𝑠𝑜𝑢𝑡) * 𝑑𝑣) * 𝑛ℎ𝑒𝑎𝑑 * 𝑛𝑙𝑎𝑦𝑒𝑟

= 𝐵 * (𝑠𝑖𝑛 + 𝑠𝑜𝑢𝑡) * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

The extra memory consumption is linear in 𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑠, while compute savings are

quadratic in 𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑠. This makes using a KV cache almost always worthwhile in

generation.

45

2.5 Estimating Memory Usage

2.5.1 Memory Components

The memory footprint of transformer inference comes from mainly three components:

parameters, the kv cache, and intermediate activations.

For each of the components, the memory usage is the number of elements multi-

plied by bytes per number, which is 2 for FP16 and 4 for FP 32.

In previous sections, we calculated the number of parameters as well the size of

the KV cache. Recall that the number of parameters is

12 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟 + (𝑛𝑣𝑜𝑐𝑎𝑏 + 𝑛𝑐𝑡𝑥) * 𝑑𝑚𝑜𝑑𝑒𝑙 + 4 * 𝑑𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟

and the number of elements in the KV cache is

2 *𝐵 * 𝑑2𝑚𝑜𝑑𝑒𝑙 * 𝑛𝑙𝑎𝑦𝑒𝑟 * (2 * 𝑠𝑖𝑛 + 𝑠𝑜𝑢𝑡 + 1) * 𝑠𝑜𝑢𝑡

To estimate the memory usage of intermediate activations, we can assume that the

GPU efficiently allocates and deallocates intermediate tensors in each of the opera-

tions. To estimate the memory usage of each of the individual operations, we will

sum up the sizes of the inputs and outputs for that operation (excluding parameters),

and then pick the maximum (peak) across all operations. In addition, to account for

the residual stream in the transformer blocks, we need to add the size of the residual

stream to the estimate of the intermediate activation, which is 𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙.

2.5.2 Activation by Operation

The sizes of the intermediate activations by operations are described in this section.

word_embedding: 𝐵 * 𝑠 * (𝑛𝑣𝑜𝑐𝑎𝑏 + 𝑑𝑚𝑜𝑑𝑒𝑙)

Inputs: 𝑋: [𝐵, 𝑠, 𝑛𝑣𝑜𝑐𝑎𝑏]

Outputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

46

positional_embedding: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙

Inputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

Outputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

attention_K: 𝐵 * 𝑠 * (𝑑𝑚𝑜𝑑𝑒𝑙 + 𝑑𝑘) per head per layer

Inputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

Outputs: 𝐾𝑖: [𝐵, 𝑠, 𝑑𝑘]

attention_V: 𝐵 * 𝑠 * (𝑑𝑚𝑜𝑑𝑒𝑙 + 𝑑𝑣) per head per layer

Inputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

Outputs: 𝑉𝑖: [𝐵, 𝑠, 𝑑𝑣]

attention_Q: 𝐵 * 𝑠 * (𝑑𝑚𝑜𝑑𝑒𝑙 + 𝑑𝑘) per head per layer

Inputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

Outputs: 𝑄𝑖: [𝐵, 𝑠, 𝑑𝑘]

attention_QK: 2 *𝐵 * 𝑠 * 𝑑ℎ𝑒𝑎𝑑 +𝐵 * 𝑠 * 𝑠 per head per layer

Inputs: 𝑄: [𝐵, 𝑠, 𝑑ℎ𝑒𝑎𝑑], 𝐾𝑇 : [𝐵, 𝑑ℎ𝑒𝑎𝑑, 𝑠]

Outputs: 𝑄 *𝐾𝑇 : [𝐵, 𝑠, 𝑠]

attention_softmax: 2 *𝐵 * 𝑠 * 𝑠 per head per layer

Inputs: 𝑄𝐾𝑇 : [𝐵, 𝑠, 𝑠]

Outputs: [𝐵, 𝑠, 𝑠]

attention_multV: 𝐵 * 𝑠 * 𝑠+ 2 *𝐵 * 𝑠 * 𝑑ℎ𝑒𝑎𝑑 per head per layer

Inputs: softmax(𝑄𝐾𝑇
√
𝑑𝑘

): [𝐵, 𝑠, 𝑠]; 𝑉 : [𝐵, 𝑠, 𝑑ℎ𝑒𝑎𝑑]

Outputs: [𝐵, 𝑠, 𝑑ℎ𝑒𝑎𝑑]

attention_out 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layer

Inputs: 𝑈 = concat(head_1, ..., head_h): [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

47

Outputs: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

layernorm: 2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 per layernorm per layer

Inputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

Outputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

mlp1: 𝐵 * 𝑠 * (𝑑𝑚𝑜𝑑𝑒𝑙 + 𝑑𝑓𝑓) per layer

Inputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

Outputs: 𝑋: [𝐵, 𝑠, 𝑑𝑓𝑓]

mlp2: 𝐵 * 𝑠 * (𝑑𝑓𝑓 + 𝑑𝑚𝑜𝑑𝑒𝑙) per layer

Inputs: 𝑋: [𝐵, 𝑠, 𝑑𝑓𝑓]

Outputs: 𝑋: [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]

2.5.3 Maximum Batch Size

The maximum batch size is limited by the GPU memory, which has to store the

weights, the kv cache, and intermediate activations. Let’s consider the single GPU

case for now where all the weights reside on the same GPU.

To calculate the maximum batch size that fits on the GPU, we will first need

to account for the memory used for storing parameters, and that leaves us with

roughly the available memory for the KV cache and intermediate activations. (We

will assume a very efficient GPU memory utilization here since we are doing speed

of light estimations.) Then we will get the memory footprint of an individual input,

divide the remaining GPU memory by that, and get the maximum number of batches

it can fit.

Let 𝐴(model_config, seq_len) be the maximum activation from one input se-

quence, then the maximum batch number (number of input sequences) is

max batches =
GPU memory − parameter size

𝐴(model_config, seq_len)

48

For the model opt-1.3b with FP16 precision, the weights take up around 2.6G of

storage. Assume a maximum context length of 1024, the maximum activation of each

input is around 0.10 GB, and the kv cache takes up 0.11 GB. In total, each input will

result in 0.21G of memory footprint. On a V100 GPU with 32GB of memory, the

maximum number of batches is (32− 2.6)/0.21 ≈ 140. On an A100 GPU with 80GB

of memory, the maximum number of batches is approximately 360. If we restrict the

maximum context length to 100, the maximum number of batches on a V100 is 1418,

and on an A100 is 3737.

2.6 Speed of Light Latency

The "Speed of Light" Latency refers to the lowest possible latency assuming maximum

hardware utilization. In practice, it will be unlikely for actual workloads to reach the

speed of light (achieve full utilization of the hardware), but it will be a lower bound

for analyzing latency.

2.6.1 FLOPs Latency

One simple way of estimating latency is to get the total number of FLOPs and divide

by the maximum FLOPs per second supported by the GPU, which is a number that

is specified in the GPU datasheets.

FLOPs latency =
total FLOPs

maximum FLOPs / s

This approximation will be reasonable for compute-bound operations, but it will

lead to non-negligible underestimations of the latency for memory-bound operations,

which we will discuss in the next section.

49

2.6.2 Arithmetic Intensity

The arithmetic intensity is defined as the ratio of the number of floating point oper-

ations (FLOPs) to memory accesses (bytes).

arithmetic intensity =
FLOPs

memory accesses

For a specific GPU, the "critical ratio" is the ratio of the maximum number of FLOPs

per second over the memory bandwidth. For a V100 GPU, using FP16 tensor cores,

this ratio is

critical ratio =
maximum FP16 tensor core FLOPs per second

Memory bandwidth

=
125 * 1012

300 * 109

=
5

12
* 103

Operations with an arithmetic intensity below the critical ratio are memory-bound,

and operations with an arithmetic intensity above the critical ratio are compute-

bound.

2.6.3 Roofline Latency

For compute-bound operations, we will estimate the latency by using the FLOPs

latency as defined above. For memory-bound operations, we will estimate the latency

by using the maximum of the FLOPs latency and the memory latency. The memory

latency is defined as the time it takes to access the data from memory or write the

data to memory, which is the activation memory of the operation divided by the

memory bandwidth of the hardware.

memory latency =
total activation memory

memory bandwidth

50

estimated latency = max(FLOPs latency,memory latency)

51

52

Chapter 3

Inference with a Single GPU

3.1 Empirical Hardware Utilization

In the previous chapter, we developed an analytical model for estimating transformer

inference performance. We use latency as our main metric here. In this chapter, we

validate our analytical model and compare that to empirical measurements. We mea-

sure the latency of transformer inference on a single GPU with the implementations

in two different libraries –– HuggingFace Transformers and Nvidia FasterTransformer.

We also use the measurements to estimate the hardware utilization of the GPU.

We use the term "FLOPs utilization" to refer to the ratio of actual FLOPs achieved

to the maximum FLOPs supported by the hardware, which can be estimated by the

ratio of the actual latency to the FLOPs latency.

FLOPs utilization =
actual FLOPs

maximum FLOPs
≈ FLOPs latency

actual latency

In addition to FLOPs utilization, we also define the "analytical utilization" as the

ratio of the latency given by the analytical model to the actual latency.

Analytical utilization ≈ Analytical latency
Actual latency

53

3.1.1 Nvidia FasterTransformer Hardware Utilization

For analyzing the hardware utilization of an existing implementation, we will use

Nvidia FasterTransformer, since it is one of the most well-optimized and publicly

available implementations of transformers. We will look at both the FLOPs utilization

and the analytical utilization. The analytical utilization will tell us how efficient the

implementation is at maximizing hardware utilization, and the FLOPs utilization,

in combination with the analytical utilization, will tell us how efficient the network

architecture is at maximizing hardware utilization.

Prefilling Stage

Figure 3-1: Analytical utilization (%) of OPT-1.3B during the prefilling stage for
various batch sizes and input sequence lengths

Figure 3-1 shows the analytical utilization (%) of OPT-1.3B during the prefilling

stage for various batch sizes and input sequence lengths, and Figure 3-2 shows the

FLOPs utilization. There are several observations we can make here

1. The shapes of the analytical utilization and FLOPS utilization curves look very

54

Figure 3-2: FLOPs utilization (%) of OPT-1.3B during the prefilling stage for various
batch sizes and input sequence lengths

similar, and for each (batch size, sequence length) data point, the FLOPs utiliza-

tion is only lower than the analytical utilization by a few percent. This means

that the prefilling stage workloads generally have high arithmetic intensity.

2. As the sequence length increases, the analytical utilization for all batch sizes

converges to around 46%, and the FLOPs utilization for all batch sizes converges

to around 42%.

3. For almost all batch sizes (except batch size 1), both the FLOPs and analytical

utilization peak at a sequence length of around 128 - 256, which is about 10% -

20% of the maximum context length. The utilizations decrease as the sequence

lengths grow longer than that range.

4. The highest FLOPs utilization we observed for prefilling is 78% for batch size

1024 and input sequence length 16. The highest analytical utilization we ob-

served for prefilling is 81% also for batch size 1024 and input sequence length

55

16. This indicates that the implementation of Nvidia FasterTransformer is rea-

sonably efficient at utilizing the hardware.

Figure 3-3: Analytical utilization (%) of OPT-1.3B during the generation stage for
various batch sizes and input sequence lengths

Generation Stage

Figure 3-3 shows the analytical utilization (%) of OPT-1.3B during the generation

stage for various batch sizes and input sequence lengths, and Figure 3-4 shows the

FLOPs utilization. Some observations we can make here are

1. Unlike the prefilling stage, the shapes of the FLOPs and analytical utilization

curves are very different. The FLOPs utilization is quite low while the analyti-

cal utilization is reasonably high. This is consistent with our analysis that the

operations in the generation stage are mostly memory bound (compute bound

operations would show similar FLOPs and analytical utilization). From this

disparity in FLOPs vs analytical utilization, we can also conclude that the im-

plementation of Nvidia FasterTransformer is also reasonably efficient at utilizing

56

Figure 3-4: FLOPs utilization (%) of OPT-1.3B during the generation stage for var-
ious batch sizes and input sequence lengths

the hardware, but we are limited by the memory-bound operations to achieve

a high FLOPs utilization.

2. The FLOPs utilization decreases for all batch sizes as the sequence length in-

creases. This is consistent with our analysis that the autoregressive generation

steps are memory bound. With more generation steps, the FLOPs utilization

decreases as there are more memory bound operations. Overall, the generation

FLOPs utilization is quite low.

3. The analytical utilization becomes higher as the sequence length grows longer

for all batch sizes.

57

3.1.2 Comparing the Performance of Huggingface Transform-

ers and Nvidia FasterTransformer

Table 3.1 compares the latency between Huggingface Transformers (HFT) and Nvidia

FasterTransformer (FT) for the prefilling stage for different batch sizes and sequence

lengths. There are several observations we can make

1. For most of the different (batch size, input sequence length) configurations, the

ratio of the HFT latency to the FT latency is about 1.5, which indicates that

Huggingface Transformer is 1.5x slower than Nvidia FasterTransformer for most

of the prefilling workloads.

2. Workloads with small batch sizes and short sequence lengths have a higher

ratio, since they have fewer compute-bound matrix multiplication operations.

The latency of the matrix multiplication operations should not be too different

for Huggingface Transformers and Nvidia Transformer, since they should both

be using optimized CUDA kernels for matrix multiplication, which is a well-

studied problem.

3. Huggingface Transformers runs out of memory earlier than Nvidia FasterTrans-

former, as indicated by "N/A"s in Table 3.1. This indicates that FT is more

efficient at memory usage than HFT.

Table 3.2 compares the latency between Huggingface Transformers (HFT) and

Nvidia FasterTransformer (FT) for the generation stage for different batch sizes and

sequence lengths. There are several observations we can make

1. The ratio HFT / FT Latency ratio decreases as we increase the batch size.

This is consistent with our expectation that operations with higher arithmetic

intensity will show a smaller gap between the latency of the different implemen-

tations.

2. With the same batch size, the HFT / FT Latency ratio is similar.

58

Table 3.1: Huggingface Transformers vs Nvidia FasterTransformer prefilling latency
for various batch size and input sequence length configurations

Batch Size Input Seq Len HFT Latency FT Latency HFT / FT Latency
1 16 28.05018425 6.12 4.58336344
1 128 29.40297127 8.34 3.525536123
1 256 30.16424179 12.5 2.413139343
1 512 33.46157074 23.54 1.421477092
1 1000 74.98526573 56.26 1.332834442
4 16 28.87535095 7.24 3.988308143
4 128 28.73539925 19.54 1.470593615
4 256 51.5396595 36.65 1.406266289
4 512 112.9214764 81.54 1.384859901
4 1000 N/A 211.55 #VALUE!
16 16 29.0248394 11.86 2.447288314
16 128 91.42208099 61.91 1.47669328
16 256 190.1779175 129.65 1.466856286
16 512 N/A 310.97 #VALUE!
16 1000 N/A 806.99 #VALUE!
64 16 45.50933838 31.48 1.44565878
64 128 338.6039734 229.74 1.473857288
64 256 N/A 495.84 #VALUE!
64 512 N/A 1241.87 #VALUE!
64 1000 N/A 3308.78 #VALUE!
128 16 86.56692505 57.71 1.500033357
128 128 N/A 452.64 #VALUE!
128 256 N/A 1032.06 #VALUE!
128 512 N/A 2493.15 #VALUE!
128 1000 N/A N/A #VALUE!
256 16 167.2084332 110.89 1.507876573
256 128 N/A 927.71 #VALUE!
256 256 N/A 2033.72 #VALUE!
256 512 N/A N/A #VALUE!
256 1000 N/A N/A #VALUE!
512 16 320.7089901 220.32 1.455650827
512 128 N/A N/A #VALUE!
512 256 N/A N/A #VALUE!
512 512 N/A N/A #VALUE!
512 1000 N/A N/A #VALUE!
1024 16 635.9052658 437.48 1.453564199
1024 128 N/A N/A #VALUE!
1024 256 N/A N/A #VALUE!
1024 512 N/A N/A #VALUE!
1024 1000 N/A N/A #VALUE!

59

3. For the different (batch size, input sequence length) configurations, the ratio

of the HFT latency to the FT latency does not stay fairly constant as in the

prefilling case. It is around 3 for most of the workloads, indicating that HFT is

less efficient than FT at the generation stage.

4. Compared to prefilling, both HFT and FT are able to support larger batch size

and sequence length combinations. We think this is because in the attention

operation, when using a KV cache during generation, we save on some of the

matrices with sequence length as dimensions, since some of them will become 1

with the KV cache.

60

Table 3.2: Huggingface Transformers vs Nvidia FasterTransformer generation latency
for various batch size and output sequence length configurations

Batch Size Input Seq Len HFT Latency FT Latency HFT / FT Latency
1 16 348.7701416 60.97 5.720356595
1 128 2754.386663 465.65 5.915143699
1 256 5513.639212 937.79 5.879396466
1 512 11039.16216 1888.29 5.846115882
1 1000 21547.35923 3902.62 5.521254754
16 16 385.1943016 75.38 5.110033187
16 128 3037.932634 613.74 4.949869056
16 256 6082.014799 1288.86 4.718910354
16 512 12195.14251 2838.09 4.296954116
16 1000 24587.50057 6455.6 3.808708807
64 16 400.21348 94.14 4.251258551
64 128 3163.727045 845.59 3.741443306
64 256 6729.804516 1945.33 3.459466782
64 512 17832.17216 4911.49 3.630705174
64 1000 54524.64676 13149.42 4.14654386
128 16 401.484251 119.53 3.358857618
128 128 3571.768045 1154.57 3.093591593
128 256 9511.126995 2844.58 3.343596241
128 512 29716.56609 7758.76 3.830066413
128 1000 N/A 22415.87 #VALUE!
256 16 408.7283611 179.35 2.278942632
256 128 5267.625093 1826.36 2.884220577
256 256 15967.69786 4730.66 3.375363661
256 512 N/A 13606.83 #VALUE!
256 1000 N/A N/A #VALUE!
512 16 629.3461323 309.31 2.034677612
512 128 9450.854301 3272.29 2.888146925
512 256 N/A 8681.98 #VALUE!
512 512 N/A N/A #VALUE!
512 1000 N/A N/A #VALUE!
1024 16 1126.393557 560.8 2.008547711
1024 128 N/A 6003.39 #VALUE!
1024 256 N/A N/A #VALUE!
1024 512 N/A N/A #VALUE!
1024 1000 N/A N/A #VALUE!

61

62

Chapter 4

Inference with multiple GPUs

4.1 Parallelism Strategies

Most machine learning models in the past fit in the memory of a single GPU without

issues; however, as the models become more complex and larger, a single GPU is

no longer sufficient, and computation must move into the distributed space. The

opportunity to parallelize work across multiple machines enables performance boosts,

and, parallelization, combined with intelligent partitioning, allows us to use large

models that would otherwise be impossible to fit on a single GPU. Some parallelization

strategies are described below.

4.1.1 Data Parallelism

Data parallelism is the simplest parallelism technique with minimal modification to

the serial code. It can be used when the entire model fits in a single GPU. To adapt

the model to a multi-GPU setting, the same model is replicated across all the GPUs,

and each replica receives and processes different slices of the dataset. For inference,

the model parameters do not need to be synchronized and updated, and different

GPUs can be used to generate results on different batches of data which are then

aggregated to produce the final results. For transformer inference with input sizes

[𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙], this is splitting along the batch dimension 𝐵.

63

4.1.2 Model Parallelism

Model parallelism is a strategy where the model is split across different GPUs, and it

is usually applicable in the case where the model cannot fit in the memory of a single

GPU, since each device only needs to store and compute a fraction of the model.

The term "model parallelism" can be an all-encompassing term describing different

strategies of partitioning a large model, and ambiguity exists regarding what specific

partitioning strategy is described by the term. In the sub-section below, we will

describe the different parallelism strategies that the term "model parallelism" can

refer to, focusing specifically on transformer-based models.

4.1.3 Tensor Parallelism

In tensor parallelism, individual tensors are sharded across different GPUs, and each

GPU only processes a slice of a tensor. The results from the individual GPUs are

only aggregated into a full tensor for operations that need the entire tensor. In

transformers, tensor parallelism is used in the multi-headed attention and the MLP

to split larger matrices into smaller ones across different accelerators. We will follow

the tensor parallelism scheme described by Nvidia Megatron [20] and implemented in

Nvidia FasterTransformer [14].

MLP

We ignore the bias of the MLP and use the simplified definition of the operation

𝑓(𝑋) = (𝑋 * 𝐴) *𝐵

where 𝑋 has shape [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙], 𝐴 has shape [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑓𝑓], and 𝐵 has shape [𝑑𝑓𝑓 , 𝑑𝑚𝑜𝑑𝑒𝑙].

𝐴 is partitioned along columns such that on each device 𝑖, 𝐴 has shape [𝑑𝑚𝑜𝑑𝑒𝑙,
𝑑𝑓𝑓

𝑑𝑚𝑜𝑑𝑒𝑙
],

and 𝑋 * 𝐴 has shape [𝐵, 𝑠,
𝑑𝑓𝑓

𝑑𝑚𝑜𝑑𝑒𝑙
]. 𝐵 is partitioned along rows, such that on each

device 𝑖, 𝐵 has shape [
𝑑𝑓𝑓

𝑑𝑚𝑜𝑑𝑒𝑙
, 𝑑𝑚𝑜𝑑𝑒𝑙]. The output will have shape [𝐵, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙].

64

Multi-Headed Attention (MHA)

The MHA has multiple attention heads, and each attention head has the key, value,

and query matrices. The 𝐾,𝑄, 𝑉 matrices have size [𝐵, 𝑠, 𝑑ℎ𝑒𝑎𝑑], where 𝑑ℎ𝑒𝑎𝑑 =
𝑑𝑚𝑜𝑑𝑒𝑙

𝑛ℎ𝑒𝑎𝑑
.

The weight matrices 𝑊𝐾 ,𝑊𝑄,𝑊𝑉 are for each head, with shape [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑ℎ𝑒𝑎𝑑]. The

heads are evenly split among the devices, such that each device has 𝑛ℎ𝑒𝑎𝑑

𝑇𝑃
heads.

The 𝑊𝑜 matrix has shape [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑚𝑜𝑑𝑒𝑙], and it is split along the row, such that

on each device the shape of the shard is [𝑑𝑚𝑜𝑑𝑒𝑙

𝑇𝑃
, 𝑑𝑚𝑜𝑑𝑒𝑙].

4.1.4 Pipeline Parallelism

The model is split up by layers so that one or several layers of the model reside on

a single GPU. Due to the sequential nature of DNNs, this strategy, if implemented

naively with only partitioning the model layers, would result in only one device ac-

tively computing at a time, resulting in underutilization of the hardware. To more

efficiently use multiple GPUs, the incoming data batches (mini-batches) are chunked

into micro-batches so that different GPUs can work on separate micro-batches at the

same time. Parallelism is achieved by pipelining the execution of micro-batches.

4.1.5 More on Parallelism

The motivation for model parallelism currently is to fit large models into the GPU

memory; however, we believe that there is also the potential to explore model paral-

lelism in the case of a small model that fits in a single GPU in order to optimize for

latency, especially for workflows that are heavily-compute bound. More generally, we

want to also answer the question that if a model can fit in 𝑁 GPUs, do we ever want

to use 𝑘 *𝑁 GPUs for inference?

Weight Stationary

We focus on weight-stationary parallelization strategies here where the weights stay

on the GPUs and the activations get sent around. Activation Stationary refers

65

to the situation where activations stay on the same GPU and the weights get sent

around.

4.2 Extending the Analytical Model to Multiple GPUs

We built an analytical model for the latency of multi-GPU inference using the strate-

gies we described in the previous section.

4.2.1 Data Parallelism

Data parallelism can be easily modeled as replicating the same model across different

devices with no additional communication overhead. If we originally have 𝑁 GPUs,

and running inference with batch size 𝐵 has latency 𝑇 , then with 𝑘 * 𝑁 GPUs, we

will be able to run inference with a total batch size of 𝑘 *𝐵 with the same latency 𝑇 .

4.2.2 Tensor Parallelism

As we recall from earlier, tensor parallelism can be applied to the MLP and Multi-head

attention layers.

MLP

For an inference job with weights of sizes [𝑑𝑚𝑜𝑑𝑒𝑙, 𝑑𝑓𝑓] and [𝑑𝑓𝑓 , 𝑑𝑚𝑜𝑑𝑒𝑙], the weights

can be parallelized across 𝑇𝑃 GPUs, such that each device will work weights of sizes

[𝑑𝑚𝑜𝑑𝑒𝑙,
𝑑𝑓𝑓
𝑇𝑃

] and [
𝑑𝑓𝑓
𝑇𝑃

, 𝑑𝑚𝑜𝑑𝑒𝑙].

As a result, the activation between the two layers of the MLP becomes [𝐵, 𝑠,
𝑑𝑓𝑓
𝑇𝑃

],

and across the two layers, the number of FLOPs reduces by a factor of 𝑇𝑃 .

The communication will happen at the end of MLP block with an all-reduce

operation. In a ring all-reduce operation with 𝑁 devices, the communication volume

is tensor size * 2 * (𝑇𝑃 − 1) = 2 * 𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * (𝑇𝑃 − 1) for each device in layer.

Since it is possible to have all GPUs communicate with each other at a given time as

long as the NVLink memory bandwidth is not exceeded, we can assume that all the

66

GPUs are communicating at the same time. As a result, the communication latency

resulting from MLP tensor parallelism in each layer is

MLP TP Comm Latency Per Layer

= (2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * (𝑇𝑃 − 1)) * 1

NVLink Memory Bandwidth
+ NVLink Latency

=
2 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * (𝑇𝑃 − 1)

NVLink Memory Bandwidth
+ NVLink Latency

where NVLink Latency is the initial latency to communicate a message.

To get the communication cost across all layers, multiply that by the number of

layers in the transformer.

MHA

Tensor parallelism for MHA is similar to MLP. Each device will get 𝑛ℎ𝑒𝑎𝑑

𝑇𝑃
heads, which

means on each device, the sizes of the 𝐾,𝑄, 𝑉 matrices will be reduced by a factor

of 𝑇𝑃 . The communication volume is the same as the MLP, since the sizes of the

communicated tensors are the same, and in each transformer block there is one MHA

and one MLP component.

In total, the tensor parallelism contributes the following communication cost

TP Comm Latency = (MLP TP Comm Latency + MHA TP Comm Latency) * 𝑛𝑙𝑎𝑦𝑒𝑟

= (
4 *𝐵 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙 * (𝑇𝑃 − 1)

𝑇𝑃 * NVLink Memory Bandwidth
+ 2 * NVLink Latency) * 𝑛𝑙𝑎𝑦𝑒𝑟

4.2.3 Pipeline Parallelism

In pipeline parallelism communication only happens between the pipeline stages, and

for each stage the communication volume is 𝐵*𝑠*𝑑𝑚𝑜𝑑𝑒𝑙. If we just process one batch,

only one GPU will be active at a time, and there will be no benefits to parallelism ––

only extra communication costs.

In practice, to solve the problem of pipeline bubbles and idle GPUs, a single batch

is sliced into mini-baches of size [𝑏, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙] where 𝑏 * number of batches = 𝐵.

67

We will define a timestep as everything moving forward one stage in the pipeline.

The total number of time steps needed to complete the entire batch 𝐵 is 𝐵
𝑏
+𝑃𝑃 −1.

In each timestep, the communication volume for all GPUs can happen at the same

time, so the communication latency at each time step is

PP Comm Latency =
𝑏 * 𝑠 * 𝑑𝑚𝑜𝑑𝑒𝑙

NVLink Memory Bandwidth
+ NVLink Latency

If we define timesteps this way, the compute latency at each timestep is the overall

inference latency divided by the number of pipeline stages.

Compute latency per pipeline stage =
Full Forward Pass Latency

𝑃𝑃

4.2.4 Combining Pipeline and Tensor Parallelism

When we have both pipeline and tensor parallelism, the inference workflow can be

described by the following pseudocode:

total steps = global batch size / local batch size + PP - 1

for step in total steps:

for layer in total layers in PP stage:

Compute

TP communication for MHA

Compute

TP communication for MLP

PP communication

We will now proceed to calculate the total latency when using both pipeline and

tensor parallelism in combination.

68

Compute Latency

In each step, the total compute latency is the latency to perform a tensor-paralleled

computation (1
𝑇𝑃

of the weights on a single GPU) with 𝑛𝑙𝑎𝑦𝑒𝑟

𝑃𝑃
transformer blocks and

on an input size of [𝑏, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙]. We can obtain this number by first invoking the

latency calculations we defined in the single-GPU case: let 𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑 be the latency for

a full forward pass on an input size [𝑏, 𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙] with the weights divided appropriately,

and then the compute latency for each step is 𝑇𝑠𝑡𝑒𝑝 =
𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝑃𝑃
. The total compute

latency is then 𝑇𝑠𝑡𝑒𝑝 * total steps.

Communications Latency

In each layer in each step, the tensor parallelism communication latency is (4*𝑏*𝑠*𝑑𝑚𝑜𝑑𝑒𝑙*(𝑇𝑃−1)
NVLink Memory Bandwidth+

2*NVLink Latency). Multiply that by the number of layers in each stage (𝑛𝑙𝑎𝑦𝑒𝑟

𝑃𝑃
) and

then by the total number of steps to get the total communication latency contributed

by tensor parallelism.

The pipeline communication latency at each step is 𝑏*𝑠*𝑑𝑚𝑜𝑑𝑒𝑙

NVLink Memory Bandwidth+NVLink Latency,

multiply that by the total number of steps to get the total communication latency

contributed by pipeline parallelism.

4.3 Multi-GPU Experiments

Typically model parallelism is used when the model doesn’t fit in a single GPU. For

our experiments, we want to expand the search space to cases where the model fits

in a single GPU as well. More generally, we want to answer the question, "if a model

fits in 𝑁 GPUs, does it make sense to use 𝑘 * 𝑁 GPUs to optimize for latency, and

how to optimally use the available GPUs for various workloads."

Model parallelism will always be beneficial for increasing throughput, since with

the model shared across different GPUs as opposed to being replicated, each GPU

can perform inference on a larger batch size. As a result, we will use minimizing

latency as our main objective.

69

We limit our experiments to a single-node setting, since inter-node communication

is more expensive and involves extra overhead.

4.3.1 Finding the Best Parallelism Strategy

Since the prefilling and generation stages have different performance characteristics,

we analyzed them separately. For the prefilling experiments, we do not perform any

generation. For the generation experiments, we use a small prefill sequence length of

3 before the generation.

We study two cases where the model either fits or doesn’t fit in a single GPU. For

these two cases, we use OPT-1.3B and OPT-13B, respectively, as the models.

The best strategies with the lowest latencies are in bold font.

Model Fits in a Single GPU - Prefilling

The model we use here is OPT-1.3B. We will try different combinations of batch sizes

and input sequence lengths, and output sequence length 0.

• Small Batch Size, Short Sequence Length: Table 4.1 shows that in this

case, model parallelism only increases the latency. To get the lowest latency,

the best strategy here is to use data parallelism to replicate the same model

across all GPUs, split the batch evenly across GPUs, and perform inference

independently.

• Big Batch Size, Short Sequence Length: Table 4.2 shows that in this case,

the best strategy to minimize latency is also to replicate the model and only do

data parallelism across the batch dimension.

• Small Batch Size, Long Sequence Length: Table 4.3 shows that the best

strategy to minimize latency here is also data parallelism.

• Medium Batch Size, Medium Sequence Length: Table 4.4 shows that

the best strategy here is also data parallelism.

70

Table 4.1: MultiGPU latency experiments for OPT-1.3B with a small batch (4) size
and short input sequence length (20) during the prefilling stage.

Batch Size Input Sequence Length TP PP Total GPUs Latency (ms)
4 20 1 1 1 7.74
4 20 2 1 2 8.88
4 20 4 1 4 9.12
4 20 1 2 2 9.48
4 20 1 4 4 11.45
4 20 2 2 4 9.39
1 20 1 1 1 6.17

Table 4.2: MultiGPU latency experiments for OPT-1.3B with a big batch size (1000)
and short input sequence length (20) during the prefilling stage.

Batch Size Input Sequence Length TP PP Total GPUs Latency (ms)
1000 20 1 1 1 530.8
1000 20 2 1 2 348.5
1000 20 4 1 4 336.66
1000 20 1 2 2 341.72
1000 20 1 4 4 209.15
1000 20 2 2 4 234.86
250 20 1 1 1 129.16

Takeaways: In summary, there is no reason to use model parallelism during the

prefilling stage to minimize latency if the model fits in a single GPU. Data parallelism

is useful for decreasing latency.

Model Fits in a Single GPU - Generation

The model we use here is OPT-1.3B. We will try different combinations of batch sizes

and output sequence lengths, and input sequence length 3.

• Small Batch Size, Short Sequence Length: Table 4.5 shows that tensor

parallelism with TP=4 is the best strategy to minimize latency here.

• Big Batch Size, Short Sequence Length: Table 4.6 shows that the best

strategy for minimizing latency here is to replicate the model across all GPUs

71

Table 4.3: MultiGPU latency experiments for OPT-1.3B with a small batch size (4)
and long input sequence length (1000) during the prefilling stage.

Batch Size Input Sequence Length TP PP Total GPUs Latency (ms)
4 1000 1 1 1 211.21
4 1000 2 1 2 128.58
4 1000 4 1 4 107.13
4 1000 1 2 2 148.23
4 1000 1 4 4 105.06
4 1000 2 2 4 92.92
1 1000 1 1 1 57.3

Table 4.4: MultiGPU latency experiments for OPT-1.3B with a medium batch size
(128) and medium input sequence length (128) during the prefilling stage.

Batch Size Input Sequence Length TP PP Total GPUs Latency (ms)
128 128 1 1 1 446.59
128 128 2 1 2 296.19
128 128 4 1 4 285.14
128 128 1 2 2 339.62
128 128 1 4 4 191.03
128 128 2 2 4 234.58
32 128 1 1 1 116.81

72

Table 4.5: MultiGPU latency experiments for OPT-1.3B with a small batch size (4)
and short output sequence length (20) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
4 20 1 1 1 85.63
4 20 2 1 2 68.69
4 20 4 1 4 60.07
4 20 1 2 2 97.21
4 20 1 4 4 104.66
4 20 2 2 4 87.76
1 20 1 1 1 74.16

and do data parallelism on the batch dimension.

• Small Batch Size, Long Sequence Length: Table 4.7 shows that in this

setting, tensor parallelism has lower latency than pipeline parallelism, and the

best strategy to minimize latency is to use tensor parallelism on 4 GPUs. We

also tried a smaller batch size (1) such that the batch cannot be split into local

batches. The results in Table 4.8 show that for a batch size of 1, we have the

same conclusion that TP=4 is the best parallelization strategy.

• Medium Batch Size, Medium Sequence Length: Table 4.9 shows that

in this case, if we are using model parallelism, pipeline parallelism has lower

latency than tensor parallelism, which means that there is probably benefit

from splitting the batch into smaller mini-batches. This indicates that data

parallelism is likely the best strategy, and our experiments confirmed this.

Takeaways: In the generation stage, using tensor parallelism in small batch

settings is beneficial for decreasing latency; however, this doesn’t scale infinitely. As

the communication costs of tensor parallelism grow quickly, we will hit diminishing

returns for using GPUs for tensor parallelism until eventually, the communication

overhead exceeds the computation savings. In large batch settings, data parallelism

by replicating the model is best for minimizing latency.

73

Table 4.6: MultiGPU latency experiments for OPT-1.3B with a big batch size (1000)
and short output sequence length (20) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
1000 20 1 1 1 688.64
1000 20 2 1 2 537.67
1000 20 4 1 4 611.5
1000 20 1 2 2 423.92
1000 20 1 4 4 310.48
1000 20 2 2 4 387.51
250 20 1 1 1 215.68

Table 4.7: MultiGPU latency experiments for OPT-1.3B with a small batch size (4)
and long output sequence length (1000) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
4 1000 1 1 1 4778.18
4 1000 2 1 2 3732.89
4 1000 4 1 4 3151.72
4 1000 1 2 2 4949.62
4 1000 1 4 4 5079.32
4 1000 2 2 4 4109.59
1 1000 1 1 1 3907.22

Table 4.8: MultiGPU latency experiments for OPT-1.3B with a small batch size (1)
and long output sequence length (1000) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
1 1000 1 1 1 3907.22
1 1000 2 1 2 3072.43
1 1000 4 1 4 2791.28
1 1000 1 2 2 3900.44
1 1000 1 4 4 3937.71

74

Table 4.9: MultiGPU latency experiments for OPT-1.3B with a medium batch size
(512) and medium output sequence length (256) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
512 256 1 1 1 8620.12
512 256 2 1 2 6558.72
512 256 4 1 4 5748.1
512 256 1 2 2 5681.33
512 256 1 4 4 3635.71
128 256 1 1 1 2844.58

Model Does Not Fit in a Single GPU - Prefilling

The model we use here is OPT-13B. We will try different combinations of batch sizes

and input sequence lengths, and output sequence length 0.

• Small Batch Size, Short Sequence Length: Table 4.10 shows that the best

strategy here is to use tensor parallelism to parallelize the model on as few

GPUs as possible first. Then replicate the same parallelization scheme on the

remaining available GPUs. Specifically, we get the lowest latency with 4 GPUs

having 2 copies of the model, and each model having 2-way tensor parallelism.

• Big Batch Size, Short Sequence Length: Table 4.11 shows that the best

strategy here is the same as the small batch size, short sequence length case ––

4 GPUs with 2 copies of the model, each model with 2-way tensor parallelism.

• Small Batch Size, Long Sequence Length: Table 4.12 shows that the best

strategy here is also the same –– 4 GPUs with 2 copies of the model, each model

with 2-way tensor parallelism.

• Medium Batch Size, Medium Sequence Length Table 4.13 shows that

the best strategy here is also 4 GPUs with 2 copies of the model, each model

with 2-way tensor parallelism.

Takeaways: For prefilling, to minimize latency, tensor parallelize the model on as

few GPUs as possible and then replicate the same model and parallelization strategy

75

Table 4.10: MultiGPU latency experiments for OPT-13B with a small batch size (4)
and short input sequence length (20) during the prefilling stage.

Batch Size Input Sequence Length TP PP Total GPUs Latency (ms)
4 20 2 1 2 15.9
4 20 4 1 4 15.53
2 20 2 1 2 12.2
4 20 1 2 2 18.51
4 20 1 4 4 22.2
2 20 1 2 2 17.1
4 20 2 2 4 17.19

Table 4.11: MultiGPU latency experiments for OPT-13B with a big batch size (1000)
and short input sequence length (20) during the prefilling stage.

Batch Size Input Sequence Length TP PP Total GPUs Latency (ms)
1000 20 2 1 2 752.06
1000 20 4 1 4 714.11
500 20 2 1 2 377.69
1000 20 1 2 2 767.42
1000 20 1 4 4 466.87
500 20 2 1 2 399.27
1000 20 2 2 4 509.5

Table 4.12: MultiGPU latency experiments for OPT-13B with a small batch size (4)
and long input sequence length (1000) during the prefilling stage.

Batch Size Input Sequence Length TP PP Total GPUs Latency (ms)
4 1000 2 1 2 263.74
4 1000 4 1 4 224.27
2 1000 2 1 2 138.14
4 1000 1 2 2 303.81
4 1000 1 4 4 212.62
2 1000 2 1 2 179.73
4 1000 2 2 4 184.57

76

Table 4.13: MultiGPU latency experiments for OPT-13B with a medium batch size
(128) and medium input sequence length (128) during the prefilling stage.

Batch Size Input Sequence Length TP PP Total GPUs Latency (ms)
128 128 2 1 2 643.34
128 128 4 1 4 597.78
64 128 2 1 2 325.51
128 128 1 2 2 709.15
128 128 1 4 4 394.86
64 128 1 2 2 341.99
128 128 2 2 4 465.64

across the remaining GPUs. This is a generalization of the case where the model fits

in a single GPU –– if a model fits in 𝑁 GPUs, tensor parallelize across 𝑁 GPUs.

Replicate the model and use the same parallelization strategy combined with data

parallelism on the remaining GPUs if the total number of GPUs is a factor of 𝑁 . With

bigger models, the communication cost of tensor parallelism grows fairly quickly since

there are more layers and the communicated tensor at each layer is also bigger.

Model Does Not Fit in a Single GPU - Generation

The model we use here is OPT-13B. We will try different combinations of batch sizes

and output sequence lengths, and input sequence length 3.

• Small Batch Size, Short Sequence Length: Table 4.14 shows that the best

strategy here is to use tensor parallelism to parallelize the model on 4 GPUs.

• Big Batch Size, Short Sequence Length: Table 4.15 shows that the best

strategy here is to use pipeline parallelism to parallelize the model on as few

GPUs as possible first. Then replicate the same parallelization scheme on the

remaining available GPUs.

• Small Batch Size, Long Sequence Length: Table 4.16 shows that the best

strategy here is to use tensor parallelism to parallelize the model on 4 GPUs.

77

Table 4.14: MultiGPU latency experiments for OPT-13B with a small batch size (4)
and short output sequence length (20) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
4 20 2 1 2 132.95
4 20 4 1 4 106.36
2 20 2 1 2 129
4 20 1 2 2 182.53
4 20 1 4 4 187.53
2 20 1 2 2 165.32
4 20 2 2 4 145.06

Table 4.15: MultiGPU latency experiments for OPT-13B with a big batch size (1000)
and short output sequence length (20) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
1000 20 2 1 2 997.22
1000 20 4 1 4 1069.39
500 20 2 1 2 559.76
1000 20 1 2 2 939.69
1000 20 1 4 4 591.3
500 20 1 2 2 518.45
1000 20 2 2 4 675.5

• Medium Batch Size, Medium Sequence Length: Table 4.17 shows that

the best strategy here is to use pipeline parallelism to parallelize the model on

as few GPUs as possible first. Then replicate the same parallelization scheme

on the remaining available GPUs.

Takeaways: For small batch sizes, tensor parallelism on as many GPUs as possible

is useful for minimizing latency. In large batch settings, if a model fits in at least

𝑁 GPUs, pipeline parallelize across exactly 𝑁 GPUs. Replicate the model and use

the same parallelization strategy combined with data parallelism on all the remaining

GPUs.

78

Table 4.16: MultiGPU latency experiments for OPT-13B with a small batch size (4)
and long output sequence length (1000) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
4 1000 2 1 2 7150.58
4 1000 4 1 4 5707.08
2 1000 2 1 2 6808.27
4 1000 1 2 2 9289.93
4 1000 1 4 4 9245.15
2 1000 1 2 2 8250.48
4 1000 2 2 4 7280.16

Table 4.17: MultiGPU latency experiments for OPT-13B with a medium batch size
(128) and medium output sequence length (128) during the generation stage.

Batch Size Output Sequence Length TP PP Total GPUs Latency (ms)
128 128 2 1 2 1905.61
128 128 4 1 4 1825.45
64 128 2 1 2 1448.68
128 128 1 2 2 1716.89
128 128 1 4 4 1544.12
64 128 1 2 2 1401.62
128 128 2 2 4 1570.53

79

80

Chapter 5

Survey of Existing Transformer

Frameworks

5.1 Other Parallelism and Model Sharding Strate-

gies

In addition to data parallelism, tensor parallelism, and pipeline parallelism we men-

tioned in the earlier sections, there are also parallelism strategies that we did not use

in our experiments but will describe here.

5.1.1 Zero Redundancy Optimizer (ZeRO)

ZeRO (Zero Redundancy Optimizer) [24] is a parallelism solution developed by Mi-

crosoft aimed at overcoming the limitations of data and model parallelism while

achieving the merits of both. ZeRO partitions the model states and optimizer states

across the devices such that it can fit a model of the size of the aggregate memory

of all available devices. There are three main optimization stages in ZeRO which

correspond to various degrees of model and optimizer state partitioning:

1. Optimizer state partitioning, also called "Zero-1"

2. Gradient partitioning, also called "Sharded DDP", "Zero-2"

81

3. Parameter partitioning, also called "Fully Sharded Data Parallelism", "Zero-3"

The ZeRO paper claims that stages 1 and 2 result in the same data communication

volume as naive data parallel, and stage 3 incurs a modest 50% increase in commu-

nication cost.

Computation is done on one or some layers of the model at a step, and each device

receives a different data batch. When computing a specific layer or layers group, the

GPU with the parameters and states associated with this specific layer/layers group

sends those states to all the GPUs. After this computation step, all the GPUs except

the one originally dedicated to storing the model parameters of the layer/layer group

can delete the received parameters. This repeats in the next layer/layer group with

a different GPU until the computation has been done for all layers of the partitioned

model.

Only Zero-3 is relevant for inference, since there will be no need for optimizer

state or gradient sharding during inference.

5.1.2 3D Parallelism

3D Parallelism [5] refers to using a combination of data, model, and tensor par-

allelism. Since tensor parallelism (Megatron-style) has the largest communication

costs, 3D parallelism prioritizes placing model parallel groups within a single com-

pute node to utilize the intra-node bandwidth, which is higher than the inter-node

communication bandwidth. Pipeline parallelism has lower communication costs due

to a lower communication volume, so it is used across nodes.

5.1.3 CPU Offloading

In the case where the full model doesn’t fit in the collective memory of all the GPUs, it

is also possible to use CPU-offloading, which refers to storing the model weights, opti-

mizer states, or gradients in the main memory and loading them to the GPU when it is

needed to perform computations. CPU offloading is supported by Deepspeed ZeRO-

Offload [6]. CPU offloading enables the use of large models on low-cost hardware

82

without requiring as many GPUs and can increase the throughput of tasks; however,

throughput is a tradeoff with latency. FlexGen [21], which is a "high-throughput

engine for running large language models with limited GPU memory", demonstrated

that in limited GPU-resources settings, it is possible to have throughput-oriented

workloads through using CPU offloading, but the latency is significantly higher than

the case where we have enough GPUs to hold the whole model.

5.2 Other Frameworks and Implementations

In addition to the libraries we used for our experiments, HuggingFace Transformers

and Nvidia FasterTransformer, we also include a survey of various existing frameworks

that include optimized transformer-specific libraries implementing transformer-baesd

architectures, or frameworks or features that help with parallelizing large models.

5.2.1 FairScale

FairScale [9] is a Pytorch extension library by Facebook for large scale training. It

supports pipeline parallelism, Megatron-style tensor parallelism, and ZeRO (all three

stages), and it has been integrated with frameworks including Fairseq, Pytorch Light-

ning, HuggingFace. The pipeline parallelism is forked from TorchGPipe, which is a

scalable pipeline parallelism library published by Google Brain and based on GPipe.

The model (tensor) parallelism is forked from Megatron-LM.

5.2.2 Native PyTorch

Pytorch Distributed Data Parallel

In the case where a model can fit in the memory of a single GPU, simple data parallel

can be used to easily scale up computation across multiple GPUs by replicating the

same model across all the GPUs, so that each GPU can work on a different batch of

the data. In Pytorch, for example, this is implemented in the DistributedDataParallel

(DDP) modules. Using DDP requires minimal modification to the serial code, since

83

the user only needs to wrap the original model in a DDP class and specify some device

parameters.

Pytorch Pipeline Parallelism

Pipeline parallelism is a natively supported feature in PyTorch and is subject to

change. It is based on FairScale’s pipe implementation of pipeline parallelism and

torchgpipe.

PyTorch Fully Sharded Data Parallelism

Pytorch’s FSDP is a native implementation of ZeRO (stages 1-3). Its implementation

is based on FairScale’s version.

5.2.3 DeepSpeed

DeepSpeed [4] is an open-source library by Microsoft that implements ZeRO par-

allelism. It has been integrated with several different open-source DL frameworks

such as Huggingface Transfomers, Huggingface Accelerate, Lightning, and MosaicML.

DeepSpeed is also able to support pipeline and tensor parallelism, but this has not

been fully integrated with other DL frameworks such Huggingface Accelerate.

5.2.4 Megatron-LM

Megatron-LM [20] is a large transformer developed by Nvidia, and the Megatron-LM

Github repository is used on ongoing research for training large transformer based

language models at scale. Many existing implementations of model parallelism use

the Megatron-style tensor (model) parallelism. The Megatron repository implements

tensor, sequence, and piepeline parallelism.

5.2.5 Megatron-DeepSpeed

Megatron-DeepSpeed [12] is a fork of the Megatron-LM Github repository that also

adds in other features such as mixture of expert model training, curriculum learning,

84

3d parallelism, and others.

5.2.6 HuggingFace Transformers

The HuggingFace Transformers library [10] provides APIs to easily download and use

the pretrained models available on HuggingFace. Transformer currently integrates the

DeepSpeed and Fairscale implementations of all three stages of zero. Transformers

currently does not support full pipeline parallelism or tensor parallelism, although

some models such as GPT2 and T5 have naive pipeline parallelism support.

5.2.7 Parallelformers

Parallelformers [15] is based on MegatronLM and is designed to make model paral-

lelization with the HuggingFace Transformers library easier. Currently Parallelform-

ers only supports inference but not training.

5.2.8 Huggingface Accelerate

Huggingface Accelerate [11] is a library that enables Pytorch code to be run in dis-

tributed configurations. It provides interfaces for other frameworks including Py-

torch’s FSDP, DeepSpeed, and Megatron-LM.

5.2.9 Facebook Fairseq

Fairseq [7] by Meta (Facebook) is a language modeling toolkit that allows researchers

to train custom language models. Fairseq supports Megatron-style tensor parallelism,

fully sharded data parallelism, and CPU offloading.

5.2.10 Facebook Metaseq

Metaseq [8] is a fork of Fairseq that removed most features offered in Fairseq to enable

faster iteration, leaving the bare minimum that is needed for working at the 100B

85

parameters model scale. It is a codebase specifically for working with OPT (Open

Pretrained Transformers)[27].

5.2.11 ByteDance LightSeq

ByteDance LightSeq [3] is a high performance library supporting both inference and

training for sequence related tasks. The library is built on top of CUDA with custom

kernel functions that have fusion patterns optimized for transformer-based models.

LightSeq supports Megatron-style tensor parallelism for training, data parallelism,

and FSDP, but it does not offer pipeline parallelism.

5.2.12 Tencent TurboTransformers

Tencent TurboTransformers [16] is an inference engine for accelerating transformer

inference. It includes an efficient parallel algorithm for GPU-based batch reduction

operations, a memory allocation system for balancing memory footprint and alloca-

tion / free efficiency, and a batch scheduler based on dynamic programming to achieve

optimal throughput on variable-length sequences.

5.2.13 Alpa

Alpa [1] is a system for automatically parallelizing large deep learning models by

generating execution plans that use a combination of data, tensor, and pipeline par-

allelism in a performant way. It is currently available in Jax, XLA, and Ray.

86

Chapter 6

Conclusion

6.1 Summary

In conclusion, this thesis focused on analyzing the performance of transformer infer-

ence for GPT-like architectures through a combination of an analytical model and

empirical studies using existing frameworks. We distilled takeaways and observations

that provide insights into the performance characteristics of transformer inference

and offer recommendations for effective parallelization of large language models.

The analysis of parameter and FLOP counts revealed that MLP parameters con-

stitute a significant portion of the total, while attention parameters and play a crucial

role as well. As models increase in size, the relative importance of embedding parame-

ters diminishes. Most operations scale linearly with sequence length and quadratically

with the hidden dimension. The MLP operation contributes the most FLOPs, while

KQV computations dominate in attention layers.

A comparison between prefilling and generation stages highlighted the difference in

performance characteristics. FLOPs for generation grow quadratically with sequence

length and can be much higher than prefilling. Although using a KV cache reduces

the gap, generation remains slower due to low arithmetic intensity operations.

The empirical studies using Huggingface Transformers and Nvidia FasterTrans-

former on single GPUs demonstrated the hardware utilization and latency differences

between the frameworks. The analytical utilization and FLOPs utilization curves ex-

87

hibited similarities for prefilling, indicating efficient hardware utilization of both the

implementation and the architecture. The generation curves indicate an efficient im-

plementation but the architecture itself is cannot have high FLOPs utilization of the

GPU. The results showed that Nvidia FasterTransformer outperformed Huggingface

Transformers in terms of both FLOPs utilization and memory efficiency, although at

the expense of usability.

The analysis further extended to multi-GPU inference, providing parallelization

strategies for cases when the model fits in a single GPU and when it does not.

Overall, this thesis provided insights and recommendations for the performance

analysis and parallelization of transformer inference in GPT-like architectures. The

combination of the analytical model and empirical studies provides a comprehensive

understanding of the performance characteristics and trade-offs involved, which can

guide researchers and practitioners in optimizing the utilization of hardware resources

and improving the efficiency of large language models.

6.2 Future Work

Analytical Model

• A more sophisticated activation memory model for the analytical model; for

example, the analysis for the exact minimum lifetime of a tensor, and more

accurate modeling of memory access times.

• Take into account more types of overheads, such as the kernel launching time.

• The analytical model currently is not able to model CPU offloading and ZeRO

parallelism. Extending the model to capture these strategies can expand the

search space of efficient parallelism strategies.

Experiments

• Setting up frameworks, especially in a distributed setting, can be difficult and

time-consuming, and running experiments require a lot of GPU hours. We

88

chose to perform our experiments with two representative frameworks –– Hug-

gingface Transformers was selected for its popularity and usability, and Nvidia

FasterTransformer was selected for its performance. Running experiments with

more frameworks would allow us to have a better understanding of the existing

implementations.

• We did not explore multi-node inference because we think that the communica-

tion cost would be too high to justify using model parallelism beyond a single

node when the model fits in a single node, but experiments confirming this

would be assuring.

Parallelism Solutions

• Develop a framework that automatically parallelizes a GPT-like model in the

most efficient way given the runtime configurations (batch size, input and output

sequence lengths.)

• For tensor parallelism in transformers, the pattern is predefined by the mega-

tron paper. A more general system to analyze the communication costs and

effectiveness of all possible tensor parallelism patterns would be valuable in

exploring a larger design space.

89

90

Bibliography

[1] Alpa. https://alpa.ai/index.html. Accessed: 2023-05-10.

[2] Bloom. https://huggingface.co/bigscience/bloom. Accessed: 2023-05-10.

[3] Bytedance lightseq. https://github.com/bytedance/lightseq. Accessed: 2023-05-
10.

[4] Deep speed github. https://github.com/microsoft/DeepSpeed. Accessed: 2023-
05-10.

[5] Deepspeed: Extreme-scale model training for everyone.
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-
model-training-for-everyone/. Accessed: 2023-05-10.

[6] Deepspeed zero offload. https://www.deepspeed.ai/tutorials/zero-offload/. Ac-
cessed: 2023-05-10.

[7] Facebook fairseq. https://github.com/facebookresearch/fairseq. Accessed: 2023-
05-10.

[8] Facebook metaseq. https://github.com/facebookresearch/metaseq. Accessed:
2023-05-10.

[9] Fairscale. https://fairscale.readthedocs.io/en/latest/what𝑖𝑠𝑓𝑎𝑖𝑟𝑠𝑐𝑎𝑙𝑒.ℎ𝑡𝑚𝑙.𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑 :
2023− 05− 10.

[10] Hugging face model parallelism. https://huggingface.co/transformers/v4.9.2/parallelism.html.
Accessed: 2023-05-10.

[11] Huggingface accelerate. https://huggingface.co/docs/accelerate/index. Ac-
cessed: 2023-05-10.

[12] Megatron deep speed github. https://github.com/microsoft/Megatron-
DeepSpeed. Accessed: 2023-05-10.

[13] Mit satori cluster. https://mit-satori.github.io/satori-basics.htmlwhat-is-satori.
Accessed: 2023-05-10.

[14] Nvidia fastertransformer. https://github.com/NVIDIA/FasterTransformer. Ac-
cessed: 2023-05-10.

91

[15] Parallelformers. https://github.com/tunib-ai/parallelformers. Accessed: 2023-
05-10.

[16] Tencent turbotransformers. https://github.com/Tencent/TurboTransformers.
Accessed: 2023-05-10.

[17] Turing-nlg: A 17-billionparameter language model by microsoft. microsoft re-
search blog, 2:13. https://www.microsoft.com/en-us/research/blog/turing-nlg-
a-17-billion-parameter-language-model-by-microsoft/. Accessed: 2023-05-10.

[18] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Win-
ter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.
CoRR, abs/2005.14165, 2020.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

[20] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU clusters. CoRR,
abs/2104.04473, 2021.

[21] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Brad-
bury, Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff
Dean. Efficiently scaling transformer inference, 2022.

[22] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2018.

[23] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. CoRR, abs/1910.10683,
2019.

[24] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:
Memory optimization towards training A trillion parameter models. CoRR,
abs/1910.02054, 2019.

[25] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas,
Vijay Korthikanti, Elton Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie

92

Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston,
Saurabh Tiwary, and Bryan Catanzaro. Using deepspeed and megatron to train
megatron-turing nlg 530b, a large-scale generative language model, 2022.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017.

[27] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open
pre-trained transformer language models. arXiv preprint arXiv:2205.01068,
2022.

93

