import io import os import requests import zipfile import natsort os.environ["TOKENIZERS_PARALLELISM"] = "false" from pathlib import Path import streamlit as st from jax import numpy as jnp import transformers from transformers import AutoTokenizer from torchvision.transforms import Compose, CenterCrop, Normalize, Resize, ToTensor from torchvision.transforms.functional import InterpolationMode from modeling_hybrid_clip import FlaxHybridCLIP import utils @st.cache(hash_funcs={FlaxHybridCLIP: lambda _: None}) def get_model(): return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian") @st.cache(hash_funcs={transformers.models.bert.tokenization_bert_fast.BertTokenizerFast: lambda _: None}) def get_tokenizer(): return AutoTokenizer.from_pretrained("dbmdz/bert-base-italian-xxl-uncased", cache_dir="./", use_fast=True) @st.cache def download_images(): # from sentence_transformers import SentenceTransformer, util img_folder = "photos/" if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0: os.makedirs(img_folder, exist_ok=True) photo_filename = "unsplash-25k-photos.zip" if not os.path.exists(photo_filename): # Download dataset if does not exist print(f"Downloading {photo_filename}...") r = requests.get("http://sbert.net/datasets/" + photo_filename, stream=True) z = zipfile.ZipFile(io.BytesIO(r.content)) print("Extracting the dataset...") z.extractall(path=img_folder) print("Done.") @st.cache() def get_image_features(): return jnp.load("static/features/features.npy") """ # 👋 Ciao! # CLIP Italian Demo ## HF-Flax Community Week """ query = st.text_input("Insert an italian query text here...") if query: with st.spinner("Computing in progress..."): model = get_model() download_images() image_features = get_image_features() model = get_model() tokenizer = get_tokenizer() image_size = model.config.vision_config.image_size val_preprocess = Compose( [ Resize([image_size], interpolation=InterpolationMode.BICUBIC), CenterCrop(image_size), ToTensor(), Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711), ), ] ) dataset = utils.CustomDataSet("photos/", transform=val_preprocess) image_paths = utils.find_image( query, model, dataset, tokenizer, image_features, n=2 ) st.image(image_paths) def read_markdown_file(markdown_file): return Path(markdown_file).read_text() intro_markdown = read_markdown_file("readme.md") st.markdown(intro_markdown, unsafe_allow_html=True)