import gradio as gr import pandas as pd block = gr.Blocks() NUM_DATASETS = 7 NUM_SCORES = 0 NUM_MODELS = 5 def general_dataframe_update(): """ Returns general dataframe for general table. """ dataframe = pd.read_csv('data/general.csv') return dataframe def classification_dataframe_update(): """ Returns classification dataframe for classification table. """ dataframe = pd.read_csv('data/classification.csv') return dataframe def sts_dataframe_udpate(): """ Returns sts dataframe for sts table. """ dataframe = pd.read_csv('data/sts.csv') return dataframe with block: gr.Markdown(f"""**Leaderboard de modelos de Embeddings en español Massive Text Embedding Benchmark (MTEB) Leaderboard.** - **Total Datasets**: {NUM_DATASETS} - **Total Languages**: 1 - **Total Scores**: {NUM_SCORES} - **Total Models**: {NUM_MODELS} """) with gr.Tabs(): with gr.TabItem("Overall"): with gr.Row(): gr.Markdown(""" **Tabla General de Embeddings** - **Metricas:** Varias, con sus respectivas medias. - **Idioma:** Español """) with gr.Row(): overall = general_dataframe_update() data_overall = gr.components.Dataframe( overall, type="pandas", wrap=True, ) with gr.TabItem("Classification"): with gr.Row(): # Create and display a sample DataFrame classification = classification_dataframe_update() data_overall = gr.components.Dataframe( classification, type="pandas", wrap=True, ) with gr.TabItem("STS"): with gr.Row(): # Create and display a sample DataFrame sts = sts_dataframe_udpate() data_overall = gr.components.Dataframe( sts, type="pandas", wrap=True, ) block.launch()