""" Usage: python mteb_meta.py path_to_results_folder Creates evaluation results metadata for the model card. E.g. --- tags: - mteb model-index: - name: SGPT-5.8B-weightedmean-msmarco-specb-bitfit results: - task: type: classification dataset: type: mteb/banking77 name: MTEB Banking77 config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 84.49350649350649 --- """ import json import logging import os import sys from mteb import MTEB logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) results_folder = sys.argv[1].rstrip("/") model_name = results_folder.split("/")[-1] all_results = {} for file_name in os.listdir(results_folder): if not file_name.endswith(".json"): logger.info(f"Skipping non-json {file_name}") continue with open(os.path.join(results_folder, file_name), "r", encoding="utf-8") as f: results = json.load(f) all_results = {**all_results, **{file_name.replace(".json", ""): results}} # Use "train" split instead TRAIN_SPLIT = ["DanishPoliticalCommentsClassification"] # Use "validation" split instead VALIDATION_SPLIT = ["AFQMC", "Cmnli", "IFlyTek", "TNews", "MSMARCO", "MultilingualSentiment", "Ocnli"] # Use "dev" split instead DEV_SPLIT = ["CmedqaRetrieval", "CovidRetrieval", "DuRetrieval", "EcomRetrieval", "MedicalRetrieval", "MMarcoReranking", "MMarcoRetrieval", "MSMARCO", "T2Reranking", "T2Retrieval", "VideoRetrieval"] MARKER = "---" TAGS = "tags:" MTEB_TAG = "- mteb" HEADER = "model-index:" MODEL = f"- name: {model_name}" RES = " results:" META_STRING = "\n".join([MARKER, TAGS, MTEB_TAG, HEADER, MODEL, RES]) ONE_TASK = " - task:\n type: {}\n dataset:\n type: {}\n name: {}\n config: {}\n split: {}\n revision: {}\n metrics:" ONE_METRIC = " - type: {}\n value: {}" SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold"] for ds_name, res_dict in sorted(all_results.items()): mteb_desc = ( MTEB(tasks=[ds_name.replace("CQADupstackRetrieval", "CQADupstackAndroidRetrieval")]).tasks[0].description ) hf_hub_name = mteb_desc.get("hf_hub_name", mteb_desc.get("beir_name")) if "CQADupstack" in ds_name: hf_hub_name = "BeIR/cqadupstack" mteb_type = mteb_desc["type"] revision = res_dict.get("dataset_revision") # Okay if it's None split = "test" if (ds_name in TRAIN_SPLIT) and ("train" in res_dict): split = "train" elif (ds_name in VALIDATION_SPLIT) and ("validation" in res_dict): split = "validation" elif (ds_name in DEV_SPLIT) and ("dev" in res_dict): split = "dev" elif "test" not in res_dict: logger.info(f"Skipping {ds_name} as split {split} not present.") continue res_dict = res_dict.get(split) for lang in mteb_desc["eval_langs"]: mteb_name = f"MTEB {ds_name}" mteb_name += f" ({lang})" if len(mteb_desc["eval_langs"]) > 1 else "" # For English there is no language key if it's the only language test_result_lang = res_dict.get(lang) if len(mteb_desc["eval_langs"]) > 1 else res_dict # Skip if the language was not found but it has other languages if test_result_lang is None: continue META_STRING += "\n" + ONE_TASK.format( mteb_type, hf_hub_name, mteb_name, lang if len(mteb_desc["eval_langs"]) > 1 else "default", split, revision ) for metric, score in test_result_lang.items(): if not isinstance(score, dict): score = {metric: score} for sub_metric, sub_score in score.items(): if any([x in sub_metric for x in SKIP_KEYS]): continue META_STRING += "\n" + ONE_METRIC.format( f"{metric}_{sub_metric}" if metric != sub_metric else metric, # All MTEB scores are 0-1, multiply them by 100 for 3 reasons: # 1) It's easier to visually digest (You need two chars less: "0.1" -> "1") # 2) Others may multiply them by 100, when building on MTEB making it confusing what the range is # This happend with Text and Code Embeddings paper (OpenAI) vs original BEIR paper # 3) It's accepted practice (SuperGLUE, GLUE are 0-100) sub_score * 100, ) META_STRING += "\n" + MARKER if os.path.exists(f"./mteb_metadata.yaml"): logger.warning("Overwriting mteb_metadata.md") with open(f"./mteb_metadata.yaml", "w") as f: f.write(META_STRING)