import glob
import json
import math
import os
from dataclasses import dataclass
from typing import Dict, List, Tuple

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks
from src.submission.check_validity import is_model_on_hub


@dataclass
class EvalResult:
    eval_name: str
    full_model: str
    org: str
    model: str
    revision: str
    results: dict
    precision: str = ""
    model_type: ModelType = ModelType.Unknown
    weight_type: str = "Original"
    architecture: str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(self, json_filepath):
        with open(json_filepath) as fp:
            data = json.load(fp)

        # We manage the legacy config format
        config = data.get("config", data.get("config_general", None))

        # Precision
        precision = config.get("model_dtype")
        if precision == "None":
            precision = "GPTQ"

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision}"
        full_model = "/".join(org_and_model)

        still_on_hub, error = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True
        )
        if not still_on_hub:
            print(full_model, error)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value
            # We skip old mmlu entries
            wrong_mmlu_version = False
            if task.benchmark == "hendrycksTest":
                for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
                    if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
                        wrong_mmlu_version = True

            if wrong_mmlu_version:
                continue

            # Some truthfulQA values are NaNs
            if task.benchmark == "truthfulqa:mc" and "harness|truthfulqa:mc|0" in data["results"]:
                if math.isnan(float(data["results"]["harness|truthfulqa:mc|0"][task.metric])):
                    results[task.benchmark] = 0.0
                    continue

            # We average all scores of a given metric (mostly for mmlu)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,  # todo model_type=, weight_type=
            revision=config.get("model_sha", ""),
            date=config.get("submission_date", ""),
            still_on_hub=still_on_hub,
        )

    def update_with_request_file(self):
        request_file = get_request_file_for_model(self.full_model, self.precision)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
        except Exception:
            print(f"Could not find request file for {self.org}/{self.model}")

    def to_dict(self):
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


def get_request_file_for_model(model_name, precision):
    request_files = os.path.join(
        "eval-queue",
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                req_content["status"] in ["FINISHED", "PENDING_NEW_EVAL"]
                and req_content["precision"] == precision.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_eval_results(results_path: str) -> List[EvalResult]:
    json_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        # up_to_date = files[-1]
        for file in files:
            json_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for json_filepath in json_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(json_filepath)
        eval_result.update_with_request_file()

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            results.append(v.to_dict())
        except KeyError:  # not all eval values present
            continue

    return results