import logging import pprint from huggingface_hub import snapshot_download logging.getLogger("openai").setLevel(logging.WARNING) from src.backend.run_eval_suite_lighteval import run_evaluation from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request, set_requests_seen from src.backend.sort_queue import sort_models_by_priority from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION from src.about import TASKS_LIGHTEVAL logging.basicConfig(level=logging.ERROR) pp = pprint.PrettyPrinter(width=80) PENDING_STATUS = "PENDING" RUNNING_STATUS = "RUNNING" FINISHED_STATUS = "FINISHED" FAILED_STATUS = "FAILED" snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) def run_auto_eval(): current_pending_status = [PENDING_STATUS] # pull the eval dataset from the hub and parse any eval requests # check completed evals and set them to finished check_completed_evals( api=API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS, failed_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND ) # Get all eval request that are PENDING, if you want to run other evals, change this parameter eval_requests, requests_seen = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) # Sort the evals by priority (first submitted first run) eval_requests = sort_models_by_priority(api=API, models=eval_requests) print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") if len(eval_requests) == 0: return eval_request = eval_requests[0] pp.pprint(eval_request) # For GPU if not eval_request or eval_request.params < 0: raise ValueError("Couldn't detect number of params, please make sure the metadata is available") # elif eval_request.params < 4: # instance_size, instance_type, cap = "x1", "nvidia-a10g", 20 elif eval_request.params < 9: instance_size, instance_type, cap = "x1", "nvidia-a10g", 35 elif eval_request.params < 24: instance_size, instance_type, cap = "x4", "nvidia-a10g", 15 else: set_eval_request( api=API, eval_request=eval_request, set_to_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, ) pp.pprint(dict(message="Number of params too big, can't run this model", params=eval_request.params)) return counter_key = f'count_{instance_size}_{instance_type}' if not counter_key in requests_seen: requests_seen[counter_key] = 0 if requests_seen[counter_key] >= cap: set_eval_request( api=API, eval_request=eval_request, set_to_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, ) pp.pprint(dict(message="Reached maximum cap for requests of this instance type this month", counter=counter_key, instance_type=instance_type, cap=cap)) return # next, check to see who made the last commit to this repo - keep track of that. One person shouldn't commit more # than 4 models in one month. commits = API.list_repo_commits(eval_request.model, revision=eval_request.revision) users = commits[0].authors for user in users: if user in requests_seen and len(requests_seen[user]) >= 4: set_eval_request( api=API, eval_request=eval_request, set_to_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, ) pp.pprint(dict(message="Reached maximum cap for requests for this user this month", counter=counter_key, user=user)) return if not user in requests_seen: requests_seen[user] = [] requests_seen[user].append(dict(model_id=eval_request.model, revision=eval_request.revision)) requests_seen[counter_key] += 1 set_requests_seen( api=API, requests_seen=requests_seen, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND ) set_eval_request( api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, ) run_evaluation( eval_request=eval_request, task_names=TASKS_LIGHTEVAL, local_dir=EVAL_RESULTS_PATH_BACKEND, batch_size=25, accelerator=ACCELERATOR, region=REGION, vendor=VENDOR, instance_size=instance_size, instance_type=instance_type, limit=LIMIT ) if __name__ == "__main__": run_auto_eval()