import re import pandas as pd import plotly.figure_factory as ff import plotly.graph_objects as go import pyperclip import streamlit as st from unidecode import unidecode st.set_page_config(layout="wide") DATA_SPLITS = ["train", "dev", "test"] def load_data() -> dict[str, pd.DataFrame]: return {data: pd.read_csv(f"data/{data}.csv") for data in DATA_SPLITS} def flatten_list(main_list: list[list]) -> list: return [item for sublist in main_list for item in sublist] def count_num_of_characters(text: str) -> int: return len(re.sub(r"[^a-zA-Z]", "", unidecode(text))) def count_num_of_words(text: str) -> int: return len(re.sub(r"[^a-zA-Z ]", "", unidecode(text)).split(" ")) DATA_DICT = load_data() header = st.container() description = st.container() dataset_statistics = st.container() class_distribution = st.container() with header: st.title("PAC - Polish Abusive Clauses Dataset") with description: st.header("Dataset description") desc = """ ''I have read and agree to the terms and conditions'' is one of the biggest lies on the Internet. Consumers rarely read the contracts they are required to accept. We conclude agreements over the Internet daily. But do we know the content of these agreements? Do we check potential unfair statements? On the Internet, we probably skip most of the Terms and Conditions. However, we must remember that we have concluded many more contracts. Imagine that we want to buy a house, a car, send our kids to the nursery, open a bank account, or many more. In all these situations, you will need to conclude the contract, but there is a high probability that you will not read the entire agreement with proper understanding. European consumer law aims to prevent businesses from using so-called ''unfair contractual terms'' in their unilaterally drafted contracts, requiring consumers to accept. Our dataset treats ''unfair contractual term'' as the equivalent of an abusive clause. It could be defined as a clause that is unilaterally imposed by one of the contract's parties, unequally affecting the other, or creating a situation of imbalance between the duties and rights of the parties. On the EU and at the national such as the Polish levels, agencies cannot check possible agreements by hand. Hence, we took the first step to evaluate the possibility of accelerating this process. We created a dataset and machine learning models to automate potentially abusive clauses detection partially. Consumer protection organizations and agencies can use these resources to make their work more effective and efficient. Moreover, consumers can automatically analyze contracts and understand what they agree upon. """ st.write(desc) st.markdown("

Dataset statistics

", unsafe_allow_html=True) with dataset_statistics: st.header("Number of samples in each data split") metrics_df = pd.DataFrame.from_dict( { "Train": DATA_DICT["train"].shape[0], "Dev": DATA_DICT["dev"].shape[0], "Test": DATA_DICT["test"].shape[0], "Total": sum( [ DATA_DICT["train"].shape[0], DATA_DICT["dev"].shape[0], DATA_DICT["test"].shape[0], ] ), }, orient="index", ).reset_index() metrics_df.columns = ["Subset", "Number of samples"] st.dataframe(metrics_df) latex_df = metrics_df.style.to_latex() st.button(label="Copy table to LaTeX", on_click=lambda: pyperclip.copy(latex_df), key="copy_metrics_df") # Class distribution in each subset with class_distribution: st.header("Class distribution in each subset") plot_column, table_column = st.columns(2) with plot_column: hist = ( pd.DataFrame( [ df["label"].value_counts(normalize=True).rename(k) for k, df in DATA_DICT.items() ] ) .reset_index() .rename({"index": "split_name"}, axis=1) ) barchart_class_dist = go.Figure( data=[ go.Bar( name="BEZPIECZNE_POSTANOWIENIE_UMOWNE", x=DATA_SPLITS, y=hist["BEZPIECZNE_POSTANOWIENIE_UMOWNE"].values, ), go.Bar( name="KLAUZULA_ABUZYWNA", x=DATA_SPLITS, y=hist["KLAUZULA_ABUZYWNA"].values, ), ] ) barchart_class_dist.update_layout( barmode="group", xaxis_title="Split name", yaxis_title="Number of data points", ) st.plotly_chart(barchart_class_dist, use_container_width=True) with table_column: for _ in range(10): st.text("") st.dataframe(hist) latex_df_class_dist = hist.style.to_latex() st.button(label="Copy table to LaTeX", on_click=lambda: pyperclip.copy(latex_df_class_dist), key="copy_class_dist_df") # Number of words per observation hist_data_num_words = [ df["text"].apply(count_num_of_words) for df in DATA_DICT.values() ] fig_num_words = ff.create_distplot( hist_data_num_words, DATA_SPLITS, show_rug=False, bin_size=1 ) fig_num_words.update_traces( nbinsx=100, autobinx=True, selector={"type": "histogram"} ) fig_num_words.update_layout( title_text="Histogram - number of characters per observation", xaxis_title="Number of characters", ) st.plotly_chart(fig_num_words, use_container_width=True) # Number of characters per observation hist_data_num_characters = [ df["text"].apply(count_num_of_characters) for df in DATA_DICT.values() ] fig_num_chars = ff.create_distplot( hist_data_num_characters, DATA_SPLITS, show_rug=False, bin_size=1 ) fig_num_chars.update_layout( title_text="Histogram - number of characters per observation", xaxis_title="Number of characters", ) st.plotly_chart(fig_num_chars, use_container_width=True)