import streamlit as st from qg_pipeline import Pipeline ## Load NLTK import nltk nltk.download('punkt') # Add a model selector to the sidebar q_model = st.sidebar.selectbox( 'Select Question Generation Model', ('valhalla/t5-small-qg-hl', 'valhalla/t5-base-qg-hl', 'ck46/t5-base-squad-qa-qg', 'ck46/t5-small-squad-qa-qg', 'ck46/t5-base-hotpot-qa-qg', 'ck46/t5-small-hotpot-qa-qg') ) a_model = st.sidebar.selectbox( 'Select Answer Extraction Model', ('valhalla/t5-small-qa-qg-hl', 'valhalla/t5-base-qa-qg-hl', 'ck46/t5-base-squad-qa-qg', 'ck46/t5-small-squad-qa-qg', 'ck46/t5-base-hotpot-qa-qg', 'ck46/t5-small-hotpot-qa-qg') ) st.header('Question-Answer Generation') st.write(f'Model in use: {model}') txt = st.text_area('Text for context') pipeline = Pipeline( q_model=q_model, q_tokenizer=q_model, a_model=a_model, a_tokenizer=a_model ) if len(txt) >= 1: autocards = pipeline(txt) else: autocards = [] st.header('Generated question and answers') st.write(autocards)