import datasets import torch from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = datasets.load_dataset('beans') feature_extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences import gradio as gr Instruction = "Submit bean-leaf images with different leaf conditions" title="Bean-leaf-disease Image classification demo" description = "Drop an Input image to classify, Observe the model prediction across 3 distinct categories." article = """ - Select an image from the examples provided as demo image - Click submit button to make Image classification - Click clear button to try new Image for classification """ interface = gr.Interface( classify, inputs='image', outputs='label', instructuction = Instruction, title = title, description = description, article = article, examples=["image1.jpg", "image2.jpg", "image3.jpg", "image4.jpg"] ) interface.launch(debug=True)