import time import os import random import numpy as np import torch import torch.utils.data import commons from mel_processing import spectrogram_torch from utils import load_wav_to_torch, load_unit_audio_pairs class UnitAudioLoader(torch.utils.data.Dataset): ''' 1) loads audio and speech units 2) compute spectrograms ''' def __init__(self, unit_audio_pairs, hparams, train=True): self.unit_audio_pairs = load_unit_audio_pairs(unit_audio_pairs) self.max_wav_value = hparams.max_wav_value self.sampling_rate = hparams.sampling_rate self.filter_length = hparams.filter_length self.hop_length = hparams.hop_length self.win_length = hparams.win_length self.sampling_rate = hparams.sampling_rate random.seed(1234) random.shuffle(self.unit_audio_pairs) self._filter() def _filter(self): lengths = [] for audio_path, _ in self.unit_audio_pairs: lengths.append(os.path.getsize(audio_path) // (2 * self.hop_length)) self.lengths = lengths def get_unit_audio_pair(self, unit_audio_pairs): audio_path, unit_path = unit_audio_pairs[0], unit_audio_pairs[1] unit = np.load(unit_path) unit = torch.FloatTensor(unit) # unit = torch.LongTensor(unit) spec, wav = self.get_audio(audio_path) return (unit, spec, wav) def get_audio(self, filename): audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.sampling_rate: raise ValueError("{} {} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) spec_filename = filename.replace(".wav", ".spec.pt") if os.path.exists(spec_filename): spec = torch.load(spec_filename) else: spec = spectrogram_torch(audio_norm, self.filter_length, self.sampling_rate, self.hop_length, self.win_length, center=False) spec = torch.squeeze(spec, 0) torch.save(spec, spec_filename) return spec, audio_norm def __getitem__(self, index): return self.get_unit_audio_pair(self.unit_audio_pairs[index]) def __len__(self): return len(self.unit_audio_pairs) class UnitAudioCollate(): def __init__(self, return_ids=False): self.return_ids = return_ids def __call__(self, batch): """Collate's training batch from normalized text and aduio PARAMS ------ batch: [unit, spec_normalized, wav_normalized] """ # Right zero-pad all one-hot text sequences to max input length _, ids_sorted_decreasing = torch.sort( torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True) max_unit_len = max([len(x[0]) for x in batch]) max_spec_len = max([x[1].size(1) for x in batch]) max_wav_len = max([x[2].size(1) for x in batch]) unit_lengths = torch.LongTensor(len(batch)) spec_lengths = torch.LongTensor(len(batch)) wav_lengths = torch.LongTensor(len(batch)) unit_padded = torch.FloatTensor(len(batch), max_unit_len, 256) spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) unit_padded.zero_() spec_padded.zero_() wav_padded.zero_() for i in range(len(ids_sorted_decreasing)): row = batch[ids_sorted_decreasing[i]] unit = row[0] unit_padded[i, :unit.size(0)] = unit unit_lengths[i] = unit.size(0) spec = row[1] spec_padded[i, :, :spec.size(1)] = spec spec_lengths[i] = spec.size(1) wav = row[2] wav_padded[i, :, :wav.size(1)] = wav wav_lengths[i] = wav.size(1) if self.return_ids: return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths """Multi speaker version""" class UnitAudioSpeakerLoader(torch.utils.data.Dataset): """ 1) loads audio, speaker_id, speech unit pairs 2) computes spectrograms from audio files. """ def __init__(self, unit_sid_audio_pairs, hparams): self.unit_sid_audio_pairs = load_unit_audio_pairs(unit_sid_audio_pairs) self.max_wav_value = hparams.max_wav_value self.sampling_rate = hparams.sampling_rate self.filter_length = hparams.filter_length self.hop_length = hparams.hop_length self.win_length = hparams.win_length self.sampling_rate = hparams.sampling_rate random.seed(1234) random.shuffle(self.unit_sid_audio_pairs) self._filter() def _filter(self): lengths = [] for audio_path, _, _ in self.unit_sid_audio_pairs: lengths.append(os.path.getsize(audio_path) // (2 * self.hop_length)) self.lengths = lengths def get_unit_sid_audio_pair(self, unit_sid_audio_pair): # separate filename, speaker_id and text audio_path, sid, unit_path = unit_sid_audio_pair[0], unit_sid_audio_pair[1], unit_sid_audio_pair[2] unit = np.load(unit_path) unit = torch.FloatTensor(unit) # unit = torch.LongTensor(unit) spec, wav = self.get_audio(audio_path) sid = self.get_sid(sid) return (unit, spec, wav, sid) def get_audio(self, filename): audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) spec_filename = filename.replace(".wav", ".spec.pt") if os.path.exists(spec_filename): spec = torch.load(spec_filename) else: spec = spectrogram_torch(audio_norm, self.filter_length, self.sampling_rate, self.hop_length, self.win_length, center=False) spec = torch.squeeze(spec, 0) torch.save(spec, spec_filename) return spec, audio_norm def get_sid(self, sid): sid = torch.LongTensor([int(sid)]) return sid def __getitem__(self, index): return self.get_unit_sid_audio_pair(self.unit_sid_audio_pairs[index]) def __len__(self): return len(self.unit_sid_audio_pairs) class UnitAudioSpeakerCollate(): """ Zero-pads model inputs and targets """ def __init__(self, return_ids=False): self.return_ids = return_ids def __call__(self, batch): """Collate's training batch from normalized text, audio and speaker identities PARAMS ------ batch: [unit, spec_normalized, wav_normalized, sid] """ # Right zero-pad all one-hot text sequences to max input length _, ids_sorted_decreasing = torch.sort( torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True) max_unit_len = max([len(x[0]) for x in batch]) max_spec_len = max([x[1].size(1) for x in batch]) max_wav_len = max([x[2].size(1) for x in batch]) unit_lengths = torch.LongTensor(len(batch)) spec_lengths = torch.LongTensor(len(batch)) wav_lengths = torch.LongTensor(len(batch)) sid = torch.LongTensor(len(batch)) unit_padded = torch.FloatTensor(len(batch), max_unit_len, 256) spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len) wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) unit_padded.zero_() spec_padded.zero_() wav_padded.zero_() for i in range(len(ids_sorted_decreasing)): row = batch[ids_sorted_decreasing[i]] unit = row[0] unit_padded[i, :unit.size(0)] = unit unit_lengths[i] = unit.size(0) spec = row[1] spec_padded[i, :, :spec.size(1)] = spec spec_lengths[i] = spec.size(1) wav = row[2] wav_padded[i, :, :wav.size(1)] = wav wav_lengths[i] = wav.size(1) sid[i] = row[3] if self.return_ids: return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): """ Maintain similar input lengths in a batch. Length groups are specified by boundaries. Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. It removes samples which are not included in the boundaries. Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. """ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) self.lengths = dataset.lengths self.batch_size = batch_size self.boundaries = boundaries self.buckets, self.num_samples_per_bucket = self._create_buckets() self.total_size = sum(self.num_samples_per_bucket) self.num_samples = self.total_size // self.num_replicas def _create_buckets(self): buckets = [[] for _ in range(len(self.boundaries) - 1)] for i in range(len(self.lengths)): length = self.lengths[i] idx_bucket = self._bisect(length) if idx_bucket != -1: buckets[idx_bucket].append(i) for i in range(len(buckets) - 1, 0, -1): if len(buckets[i]) == 0: buckets.pop(i) self.boundaries.pop(i + 1) num_samples_per_bucket = [] for i in range(len(buckets)): len_bucket = len(buckets[i]) total_batch_size = self.num_replicas * self.batch_size rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size num_samples_per_bucket.append(len_bucket + rem) return buckets, num_samples_per_bucket def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = [] if self.shuffle: for bucket in self.buckets: indices.append(torch.randperm(len(bucket), generator=g).tolist()) else: for bucket in self.buckets: indices.append(list(range(len(bucket)))) batches = [] for i in range(len(self.buckets)): bucket = self.buckets[i] len_bucket = len(bucket) ids_bucket = indices[i] num_samples_bucket = self.num_samples_per_bucket[i] # add extra samples to make it evenly divisible rem = num_samples_bucket - len_bucket ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)] # subsample ids_bucket = ids_bucket[self.rank::self.num_replicas] # batching for j in range(len(ids_bucket) // self.batch_size): batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]] batches.append(batch) if self.shuffle: batch_ids = torch.randperm(len(batches), generator=g).tolist() batches = [batches[i] for i in batch_ids] self.batches = batches assert len(self.batches) * self.batch_size == self.num_samples return iter(self.batches) def _bisect(self, x, lo=0, hi=None): if hi is None: hi = len(self.boundaries) - 1 if hi > lo: mid = (hi + lo) // 2 if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid) else: return self._bisect(x, mid + 1, hi) else: return -1 def __len__(self): return self.num_samples // self.batch_size