import openai import os import gradio as gr openai.api_key = os.environ.get("OPENAI_API_KEY") class Conversation: def __init__(self, prompt, num_of_round): self.prompt = prompt self.num_of_round = num_of_round self.messages = [] self.messages.append({"role": "system", "content": self.prompt}) def ask(self, question): print("start") print(openai.api_key) try: self.messages.append( {"role": "user", "content": question}) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=self.messages, temperature=0.5, max_tokens=2048, top_p=1, ) except Exception as e: print(e) return e message = response["choices"][0]["message"]["content"] self.messages.append({"role": "assistant", "content": message}) if len(self.messages) > self.num_of_round*2 + 1: del self.messages[1:3] return message prompt = """你是一个智能客服,可以帮助中国的餐饮店老板,在饿了么外卖平台上更好的经营""" conv = Conversation(prompt, 5) def predict(input, history=[]): history.append(input) response = conv.ask(input) history.append(response) responses = [(u,b) for u,b in zip(history[::2], history[1::2])] return responses, history with gr.Blocks(css="#chatbot{height:350px} .overflow-y-auto{height:500px}") as demo: chatbot = gr.Chatbot(elem_id="chatbot") state = gr.State([]) with gr.Row(): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) txt.submit(predict, [txt, state], [chatbot, state]) demo.launch(share=False)