import spaces import gradio as gr from transformers import pipeline from spacy import displacy import torch @spaces.GPU def dummy(): # just a dummy pass # load model pipeline globally try: ner_pipe = pipeline( task="ner", model="cindyangelira/ner-roberta-large-bahasa-indonesia-finetuned", aggregation_strategy="simple", ) except Exception as e: print(f"Error loading model: {e}") raise # Define colors for each tag ENTITY_COLORS = { "O": "#ffffff", # White for 'O' "PER": "#ffadad", # Light red for 'PERSON' "LOC": "#ffda83", # Light yellow for 'LOCATION' "DATE_TIME": "#ffa500", # Light orange for 'DOB' "EMAIL": "#85e0e0", # Light cyan for 'EMAIL' "GENDER": "#c3c3e0", # Light gray for 'GENDER' "SSN": "#800080", # Purple for 'ID' "PHONE": "#d1ff85" # Light green for 'PHONE NUMBER' } def get_colors(): return ENTITY_COLORS.copy() def process_prediction(text, pred): if not text or not pred: return "
No text or predictions to process
" colors = get_colors() combined_ents = [] current_ent = None try: for token in pred: token_label = token['entity_group'] token_start = token['start'] token_end = token['end'] if current_ent is None or current_ent['label'] != token_label: if current_ent: combined_ents.append(current_ent) current_ent = { 'start': token_start, 'end': token_end, 'label': token_label } else: current_ent['end'] = token_end if current_ent: combined_ents.append(current_ent) doc = { "text": text, "ents": combined_ents, "title": None } options = {"ents": list(colors.keys()), "colors": colors} html = displacy.render(doc, style="ent", manual=True, options=options) return html except Exception as e: return f"Error processing predictions: {str(e)}
" def ner_visualization(text): if not text or not text.strip(): return "Please enter some text
" try: predictions = ner_pipe(text) return process_prediction(text, predictions) except Exception as e: return f"Error during NER processing: {str(e)}
" # create Gradio interface iface = gr.Interface( fn=ner_visualization, inputs=gr.Textbox( label="Input Text", placeholder="Enter text in Bahasa Indonesia..." ), outputs="html", title="Let Me Label You", description="Let Me Label You, is a Name Entity Recognition (NER) tool that helps you identify named entities in Indonesian text. Named entities include things like person names, organizations, locations, and more.", article="Enter text to see named entity recognition results highlighted.", examples=[ "Joko Widodo lahir di Surakarta pada tanggal 21 Juni 1961.", "Email saya adalah example@email.com dan nomor HP 081234567890." ], cache_examples=True ) if __name__ == "__main__": try: iface.launch( server_name="0.0.0.0", server_port=7860, share=False ) except Exception as e: print(f"Error launching interface: {e}")