import torch import gradio as gr from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import tempfile import os MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(inputs, task): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text #def _return_yt_html_embed(yt_url): #video_id = yt_url.split("?v=")[-1] #HTML_str = ( # f'
' # "
" #) #return HTML_str #def download_yt_audio(yt_url, filename): #info_loader = youtube_dl.YoutubeDL() # #try: # info = info_loader.extract_info(yt_url, download=False) #except youtube_dl.utils.DownloadError as err: # raise gr.Error(str(err)) # #file_length = info["duration_string"] #file_h_m_s = file_length.split(":") #file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] # #if len(file_h_m_s) == 1: # file_h_m_s.insert(0, 0) #if len(file_h_m_s) == 2: # file_h_m_s.insert(0, 0) #file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] # #if file_length_s > YT_LENGTH_LIMIT_S: # yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) # file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) # raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") # #ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} # #with youtube_dl.YoutubeDL(ydl_opts) as ydl: # try: # ydl.download([yt_url]) # except youtube_dl.utils.ExtractorError as err: # raise gr.Error(str(err)) #def yt_transcribe(yt_url, task, max_filesize=75.0): #html_embed_str = _return_yt_html_embed(yt_url) #with tempfile.TemporaryDirectory() as tmpdirname: #filepath = os.path.join(tmpdirname, "video.mp4") #download_yt_audio(yt_url, filepath) #with open(filepath, "rb") as f: #inputs = f.read() #inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) #inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} #text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] #return None#html_embed_str, text demo = gr.Blocks() file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", #layout="horizontal", theme="huggingface", title="Whisper Large V3: Transcribe Audio", #description=( # "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper" # f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" # " of arbitrary length." #), #allow_flagging="never", ) with demo: gr.TabbedInterface([ file_transcribe], [ "Audio file"]) demo.launch(enable_queue=True)