from PIL import Image from transformers import DonutProcessor, VisionEncoderDecoderModel import torch import re import gradio as gr processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip") model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip") def ClassificateDocs(pathimage): image = Image.open(pathimage) pixel_values = processor(image, return_tensors="pt").pixel_values task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token return processor.token2json(sequence) processor_prs= DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") model_prs = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") def ProcessBill(pathimage ): image = Image.open(pathimage) pixel_values = processor_prs(image, return_tensors="pt").pixel_values task_prompt = "" decoder_input_ids = processor_prs.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")["input_ids"] device = "cuda" if torch.cuda.is_available() else "cpu" model_prs.to(device) outputs = model_prs.generate(pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model_prs.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor_prs.tokenizer.pad_token_id, eos_token_id=processor_prs.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor_prs.tokenizer.unk_token_id]], return_dict_in_generate=True, output_scores=True,) sequence = processor_prs.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor_prs.tokenizer.eos_token, "").replace(processor_prs.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token return processor_prs.token2json(sequence) processor_qa= DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") model_qa = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") def QAsBill(pathimage,question="When is the coffee break?" ): image = Image.open(pathimage) pixel_values = processor_qa(image, return_tensors="pt").pixel_values task_prompt = "{user_input}" prompt = task_prompt.replace("{user_input}", question) decoder_input_ids = processor_qa.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids device = "cuda" if torch.cuda.is_available() else "cpu" model_qa.to(device) outputs = model_qa.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor_qa.tokenizer.pad_token_id, eos_token_id=processor_qa.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[processor_qa.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor_qa.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor_qa.tokenizer.eos_token, "").replace(processor._qatokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token return processor_qa.token2json(sequence) demo = gr.Blocks() gradio_app_cls = gr.Interface( fn=ClassificateDocs, inputs=[ gr.Image(type='filepath') ], outputs="text", ) gradio_app_prs = gr.Interface( fn=ProcessBill, inputs=[ gr.Image(type='filepath') ], outputs="text", ) gradio_app_qa = gr.Interface( fn=QAsBill, inputs=[ gr.Image(type='filepath'), gr.Text() ], outputs="text", ) demo = gr.TabbedInterface([gradio_app_cls, gradio_app_prs,gradio_app_qa], ["class", "parse","QA"]) if __name__ == "__main__": demo.launch()