from definitions import * st.set_option('deprecation.showPyplotGlobalUse', False) st.sidebar.subheader("请选择模型参数:sunglasses:") num_leaves = st.sidebar.slider(label = 'num_leaves', min_value = 4, max_value = 200 , value = 31, step = 1) max_depth = st.sidebar.slider(label = 'max_depth', min_value = -1, max_value = 15, value = -1, step = 1) min_data_in_leaf = st.sidebar.slider(label = 'min_data_in_leaf', min_value = 8, max_value = 55, value = 20, step = 1) feature_fraction = st.sidebar.slider(label = 'feature_fraction', min_value = 0.0, max_value = 1.0 , value = 0.8, step = 0.1) min_data_per_group = st.sidebar.slider(label = 'min_data_per_group', min_value = 6, max_value = 289 , value = 100, step = 1) max_cat_threshold = st.sidebar.slider(label = 'max_cat_threshold', min_value = 6, max_value = 289 , value = 32, step = 1) learning_rate = st.sidebar.slider(label = 'learning_rate', min_value = 0.0, max_value = 1.00, value = 0.05, step = 0.01) num_leaves = st.sidebar.slider(label = 'num_leaves', min_value = 6, max_value = 289 , value = 31, step = 1) max_bin = st.sidebar.slider(label = 'max_bin', min_value = 6, max_value = 289 , value = 255, step = 1) num_iterations = st.sidebar.slider(label = 'num_iterations', min_value = 8, max_value = 289, value = 100, step = 1) st.header('LightGBM-parameter-tuning-with-streamlit') # 加载数据 breast_cancer = load_breast_cancer() data = breast_cancer.data target = breast_cancer.target # 划分训练数据和测试数据 X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2) # 转换为Dataset数据格式 lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) # 模型训练 params = {'num_leaves': num_leaves, 'max_depth': max_depth, 'min_data_in_leaf': min_data_in_leaf, 'feature_fraction': feature_fraction, 'min_data_per_group': min_data_per_group, 'max_cat_threshold': max_cat_threshold, 'learning_rate':learning_rate,'num_leaves':num_leaves, 'max_bin':max_bin,'num_iterations':num_iterations } gbm = lgb.train(params, lgb_train, num_boost_round=2000, valid_sets=lgb_eval, early_stopping_rounds=500) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) probs = gbm.predict(X_test, num_iteration=gbm.best_iteration) # 输出的是概率结果 fpr, tpr, thresholds = roc_curve(y_test, probs) st.write('------------------------------------') st.write('Confusion Matrix:') st.write(confusion_matrix(y_test, np.where(probs > 0.5, 1, 0))) st.write('------------------------------------') st.write('Classification Report:') report = classification_report(y_test, np.where(probs > 0.5, 1, 0), output_dict=True) report_matrix = pd.DataFrame(report).transpose() st.dataframe(report_matrix) st.write('------------------------------------') st.write('ROC:') plot_roc(fpr, tpr)