import os import torch import gradio as gr import torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim n_epochs = 3 batch_size_train = 64 batch_size_test = 1000 learning_rate = 0.01 momentum = 0.5 log_interval = 10 random_seed = 1 torch.backends.cudnn.enabled = False torch.manual_seed(random_seed) train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('files/', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_train, shuffle=True) test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('files/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_test, shuffle=True) # Source: https://nextjournal.com/gkoehler/pytorch-mnist class MNIST_Model(nn.Module): def __init__(self): super(MNIST_Model, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) def train(epochs,network,optimizer): train_losses=[] network.train() for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = network(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) train_losses.append(loss.item()) torch.save(network.state_dict(), 'model.pth') torch.save(optimizer.state_dict(), 'optimizer.pth') def test(): test_losses=[] network.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = network(data) test_loss += F.nll_loss(output, target, size_average=False).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) test_losses.append(test_loss) print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) random_seed = 1 torch.backends.cudnn.enabled = False torch.manual_seed(random_seed) network = MNIST_Model() optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum) model_state_dict = 'model.pth' optimizer_state_dict = 'optmizer.pth' if os.path.exists(model_state_dict): network_state_dict = torch.load(model_state_dict) network.load_state_dict(network_state_dict) if os.path.exists(optimizer_state_dict): optimizer_state_dict = torch.load(optimizer_state_dict) optimizer.load_state_dict(optimizer_state_dict) # Train #train(n_epochs,network,optimizer) def image_classifier(inp): input_image = torchvision.transforms.ToTensor()(inp).unsqueeze(0) with torch.no_grad(): prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0) #pred_number = prediction.data.max(1, keepdim=True)[1] sorted_prediction = torch.sort(prediction,descending=True) confidences={} for s,v in zip(sorted_prediction.indices.numpy().tolist(),sorted_prediction.values.numpy().tolist()): confidences.update({s:v}) return confidences TITLE = "MNIST Adversarial: Try to fool the MNIST model" description = """This project is about dynamic adversarial data collection (DADC). The basic idea is to do data collection, but specifically collect “adversarial data”, the kind of data that is difficult for a model to predict correctly. This kind of data is presumably the most valuable for a model, so this can be helpful in low-resource settings where data is hard to collect and label. ### What to do: - Draw a number from 0-9. - Click `Submit` and see the model's prediciton. - If the model misclassifies it, Flag that example. - This will add your (adversarial) example to a dataset on which the model will be trained later. """ gr.Interface(fn=image_classifier, inputs=gr.Image(source="canvas",shape=(28,28),invert_colors=True,image_mode="L",type="pil"), outputs=gr.outputs.Label(num_top_classes=10), allow_flagging="manual", title = TITLE, description=description).launch()