# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm # DeiT: https://github.com/facebookresearch/deit # MAE: https://github.com/facebookresearch/mae # -------------------------------------------------------- from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.vision_transformer import PatchEmbed, Block, Mlp, DropPath from util.pos_embed import get_2d_sincos_pos_embed class MCCDecoderAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., args=None): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.args = args self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, unseen_size): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) attn = (q @ k.transpose(-2, -1)) * self.scale mask = torch.zeros((1, 1, N, N), device=attn.device) mask[:, :, :, -unseen_size:] = float('-inf') for i in range(unseen_size): mask[:, :, -(i + 1), -(i + 1)] = 0 attn = attn + mask attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MCCDecoderBlock(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, args=None): super().__init__() self.args = args self.norm1 = norm_layer(dim) self.attn = MCCDecoderAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, args=args) self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x, unseen_size): x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), unseen_size))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class XYZPosEmbed(nn.Module): """ Masked Autoencoder with VisionTransformer backbone """ def __init__(self, embed_dim): super().__init__() self.embed_dim = embed_dim self.two_d_pos_embed = nn.Parameter( torch.zeros(1, 64 + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.win_size = 8 self.pos_embed = nn.Linear(3, embed_dim) self.blocks = nn.ModuleList([ Block(embed_dim, num_heads=12, mlp_ratio=2.0, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)) for _ in range(1) ]) self.invalid_xyz_token = nn.Parameter(torch.zeros(embed_dim,)) self.initialize_weights() def initialize_weights(self): torch.nn.init.normal_(self.cls_token, std=.02) two_d_pos_embed = get_2d_sincos_pos_embed(self.two_d_pos_embed.shape[-1], 8, cls_token=True) self.two_d_pos_embed.data.copy_(torch.from_numpy(two_d_pos_embed).float().unsqueeze(0)) torch.nn.init.normal_(self.invalid_xyz_token, std=.02) def forward(self, seen_xyz, valid_seen_xyz): emb = self.pos_embed(seen_xyz) emb[~valid_seen_xyz] = 0.0 emb[~valid_seen_xyz] += self.invalid_xyz_token B, H, W, C = emb.shape emb = emb.view(B, H // self.win_size, self.win_size, W // self.win_size, self.win_size, C) emb = emb.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.win_size * self.win_size, C) emb = emb + self.two_d_pos_embed[:, 1:, :] cls_token = self.cls_token + self.two_d_pos_embed[:, :1, :] cls_tokens = cls_token.expand(emb.shape[0], -1, -1) emb = torch.cat((cls_tokens, emb), dim=1) for _, blk in enumerate(self.blocks): emb = blk(emb) return emb[:, 0].view(B, (H // self.win_size) * (W // self.win_size), -1) class DecodeXYZPosEmbed(nn.Module): """ Masked Autoencoder with VisionTransformer backbone """ def __init__(self, embed_dim): super().__init__() self.embed_dim = embed_dim self.pos_embed = nn.Linear(3, embed_dim) def forward(self, unseen_xyz): return self.pos_embed(unseen_xyz) class MCC(nn.Module): """ Masked Autoencoder with VisionTransformer backbone """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=1024, depth=24, num_heads=16, decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4., norm_layer=nn.LayerNorm, rgb_weight=1.0, occupancy_weight=1.0, args=None): super().__init__() self.rgb_weight = rgb_weight self.occupancy_weight = occupancy_weight self.args = args # -------------------------------------------------------------------------- # encoder specifics self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.cls_token_xyz = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False) # fixed sin-cos embedding self.xyz_pos_embed = XYZPosEmbed(embed_dim) self.blocks = nn.ModuleList([ Block( embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, drop_path=args.drop_path ) for i in range(depth)]) self.blocks_xyz = nn.ModuleList([ Block( embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, drop_path=args.drop_path ) for i in range(depth)]) self.norm = norm_layer(embed_dim) self.norm_xyz = norm_layer(embed_dim) self.cached_enc_feat = None # -------------------------------------------------------------------------- # decoder specifics self.decoder_embed = nn.Linear( embed_dim * 2, decoder_embed_dim, bias=True ) self.decoder_xyz_pos_embed = DecodeXYZPosEmbed(decoder_embed_dim) self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding self.decoder_blocks = nn.ModuleList([ MCCDecoderBlock( decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, drop_path=args.drop_path, args=args, ) for i in range(decoder_depth)]) self.decoder_norm = norm_layer(decoder_embed_dim) if self.args.regress_color: self.decoder_pred = nn.Linear(decoder_embed_dim, 3 + 1, bias=True) # decoder to patch else: self.decoder_pred = nn.Linear(decoder_embed_dim, 256 * 3 + 1, bias=True) # decoder to patch self.loss_occupy = nn.BCEWithLogitsLoss() if self.args.regress_color: self.loss_rgb = nn.MSELoss() else: self.loss_rgb = nn.CrossEntropyLoss() self.initialize_weights() def initialize_weights(self): pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True) self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) # initialize patch_embed like nn.Linear (instead of nn.Conv2d) w = self.patch_embed.proj.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.cls_token, std=.02) torch.nn.init.normal_(self.cls_token_xyz, std=.02) # initialize nn.Linear and nn.LayerNorm self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): # we use xavier_uniform following official JAX ViT: torch.nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_encoder(self, x, seen_xyz, valid_seen_xyz): # get tokens x = self.patch_embed(x) x = x + self.pos_embed[:, 1:, :] y = self.xyz_pos_embed(seen_xyz, valid_seen_xyz) ##### forward E_XYZ ##### # append cls token cls_token_xyz = self.cls_token_xyz cls_tokens_xyz = cls_token_xyz.expand(y.shape[0], -1, -1) y = torch.cat((cls_tokens_xyz, y), dim=1) # apply Transformer blocks for blk in self.blocks_xyz: y = blk(y) y = self.norm_xyz(y) ##### forward E_RGB ##### # append cls token cls_token = self.cls_token + self.pos_embed[:, :1, :] cls_tokens = cls_token.expand(x.shape[0], -1, -1) x = torch.cat((cls_tokens, x), dim=1) # apply Transformer blocks for blk in self.blocks: x = blk(x) x = self.norm(x) # combine encodings x = torch.cat([x, y], dim=2) return x def forward_decoder(self, x, unseen_xyz): # embed tokens x = self.decoder_embed(x) x = x + self.decoder_pos_embed # 3D pos embed unseen_xyz = self.decoder_xyz_pos_embed(unseen_xyz) x = torch.cat([x, unseen_xyz], dim=1) # apply Transformer blocks for blk in self.decoder_blocks: x = blk(x, unseen_xyz.shape[1]) x = self.decoder_norm(x) # predictor projection pred = self.decoder_pred(x) # remove cls & seen token pred = pred[:, -unseen_xyz.shape[1]:, :] return pred def forward_loss(self, pred, unseen_occupy, unseen_rgb): loss = self.loss_occupy( pred[:, :, :1].reshape((-1, 1)), unseen_occupy.reshape((-1, 1)).float() ) * self.occupancy_weight if unseen_occupy.sum() > 0: if self.args.regress_color: pred_rgb = pred[:, :, 1:][unseen_occupy.bool()] gt_rgb = unseen_rgb[unseen_occupy.bool()] else: pred_rgb = pred[:, :, 1:][unseen_occupy.bool()].reshape((-1, 256)) gt_rgb = torch.round(unseen_rgb[unseen_occupy.bool()] * 255).long().reshape((-1,)) rgb_loss = self.loss_rgb(pred_rgb, gt_rgb) * self.rgb_weight loss = loss + rgb_loss return loss def clear_cache(self): self.cached_enc_feat = None def forward(self, seen_images, seen_xyz, unseen_xyz, unseen_rgb, unseen_occupy, valid_seen_xyz, cache_enc=False): unseen_xyz = shrink_points_beyond_threshold(unseen_xyz, self.args.shrink_threshold) if self.cached_enc_feat is None: seen_images = preprocess_img(seen_images) seen_xyz = shrink_points_beyond_threshold(seen_xyz, self.args.shrink_threshold) latent = self.forward_encoder(seen_images, seen_xyz, valid_seen_xyz) if cache_enc: if self.cached_enc_feat is None: self.cached_enc_feat = latent else: latent = self.cached_enc_feat pred = self.forward_decoder(latent, unseen_xyz) loss = self.forward_loss(pred, unseen_occupy, unseen_rgb) return loss, pred def get_mcc_model(**kwargs): return MCC( embed_dim=768, depth=12, num_heads=12, decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs ) def shrink_points_beyond_threshold(xyz, threshold): xyz = xyz.clone().detach() dist = (xyz ** 2.0).sum(axis=-1) ** 0.5 affected = (dist > threshold) * torch.isfinite(dist) xyz[affected] = xyz[affected] * ( threshold * (2.0 - threshold / dist[affected]) / dist[affected] )[..., None] return xyz def preprocess_img(x): if x.shape[2] != 224: assert x.shape[2] == 800 x = F.interpolate( x, scale_factor=224./800., mode="bilinear", ) resnet_mean = torch.tensor([0.485, 0.456, 0.406], device=x.device).reshape((1, 3, 1, 1)) resnet_std = torch.tensor([0.229, 0.224, 0.225], device=x.device).reshape((1, 3, 1, 1)) imgs_normed = (x - resnet_mean) / resnet_std return imgs_normed class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma