from imgviz import instances2rgb import tensorflow as tf import numpy as np from core.data import format_frame # detections: (classes: list of class_name, boxes: list of [x1, y1, x2, y2]) # actions: list of f'{action_name}: {confidence}' detect_object_frame_steps = 5 classify_action_frame_steps = 15 classify_action_num_frames = 8 def detect_object(detector, frame): result = detector(frame, classes=4, verbose=False)[0] classes = result.boxes.cls.numpy() boxes = result.boxes.xyxy.numpy() detections = ( [result.names[i].capitalize() for i in classes], boxes, ) return detections def classify_action(classifier, frames, id_to_name): actions = [] frames = np.array(frames) frames = frames[..., [2, 1, 0]] frames = tf.expand_dims(frames, 0) output = classifier(frames, training=False) confidences = tf.nn.softmax(output).numpy()[0] for (class_id, confidence) in enumerate(confidences): other_class_id = 2 if confidence > 0.3 and class_id != other_class_id: actions.append(f'{id_to_name[class_id]}: {confidence:.2f}') return actions def draw_boxes(frame, detections, actions): (classes, boxes) = detections max_area = 0 max_area_id = 0 for i, box in enumerate(boxes): area = (box[3] - box[1]) * (box[2] - box[0]) if area > max_area: max_area = area max_area_id = i labels = [0 for _ in classes] colormap = [(0x39, 0xc5, 0xbb)] line_width = 2 captions = [ f'{class_name}\n' + '\n'.join(actions if i == max_area_id else []) for (i, class_name) in enumerate(classes) ] bboxes = [ [box[1], box[0], box[3], box[2]] for box in boxes ] frame = instances2rgb( frame, labels=labels, captions=captions, bboxes=bboxes, colormap=colormap, font_size=20, line_width=line_width, ) return frame def FrameProcessor(detector, classifier, id_to_name): current_frame = 0 frames = [] actions = [] detections = ([], []) def process_frame(frame): nonlocal current_frame, frames, actions, detections current_frame += 1 if current_frame % classify_action_frame_steps == 0: frames.append(format_frame(frame)) if current_frame % detect_object_frame_steps == 0: print(f'Detect object: Frame {current_frame}') detections = detect_object(detector, frame) if len(frames) == classify_action_num_frames: print(f'Classify action: Until frame {current_frame}') actions = classify_action(classifier, frames, id_to_name) frames = [] frame = draw_boxes(frame, detections, actions) return frame return process_frame