import random class FetchModel: @staticmethod def all_models(): models = [ { "id": "llama-4-maverick-17b", "name": "LLaMA 4 Maverick 17B", "description": "Meta AI's 17B-parameter general-purpose model from the LLaMA 4 series, designed for high-quality text generation.", "type": "text" }, { "id": "llama-4-scout-17b", "name": "LLaMA 4 Scout 17B", "description": "Instruction-tuned version of LLaMA 4 by Meta, tailored for alignment and structured task performance.", "type": "text" }, { "id": "llama-3.1-8b", "name": "LLaMA 3.1 8B", "description": "A fast and lightweight 8B parameter model from Meta's LLaMA 3.1 line, optimized for low-latency inference.", "type": "text" }, { "id": "llama-3.3-70b", "name": "LLaMA 3.3 70B", "description": "Meta's 70B parameter flagship model from LLaMA 3.3, designed for state-of-the-art language understanding and generation.", "type": "text" }, { "id": "deepseek-r1", "name": "DeepSeek R1", "description": "DeepSeek AIs foundational model focused on reasoning, language understanding, and long-context comprehension.", "type": "text" }, { "id": "deepseek-v3", "name": "DeepSeek V3", "description": "DeepSeek AIs third-generation model with enhanced reasoning and coding abilities.", "type": "text" }, { "id": "qwen-2.5-72b", "name": "Qwen 2.5 72B", "description": "Large instruction-tuned language model from Qwen 2.5 family, optimized for complex NLP tasks.", "type": "text" }, { "id": "gemma-2-27b", "name": "Gemma 2 27B", "description": "Googles instruction-tuned model with 27B parameters, capable of high-performance natural language understanding.", "type": "text" }, { "id": "grok-3", "name": "Grok 3", "description": "xAI's general-purpose large language model designed for reasoning, conversation, and alignment.", "type": "text" }, { "id": "grok-3-fast", "name": "Grok 3 (Fast)", "description": "A low-latency version of Grok 3 optimized for responsiveness and quick task execution.", "type": "text" }, { "id": "grok-3-mini", "name": "Grok 3 Mini", "description": "A smaller variant of Grok 3 designed for lighter inference while maintaining core capabilities.", "type": "text" }, { "id": "grok-3-mini-fast", "name": "Grok 3 Mini (Fast)", "description": "Fast and lightweight variant of Grok 3 Mini for extremely low-latency use cases.", "type": "text" }, { "id": "grok-2-1212", "name": "Grok 2 1212", "description": "An earlier generation Grok model from xAI, optimized for general language tasks with improved efficiency.", "type": "text" }, { "id": "fal-ai/fast-sdxl", "name": "Fast SDXL", "description": "A fast and efficient image generation model from the SDXL family, optimized for high-quality outputs.", "type": "image" } ] return models @staticmethod def select_model(id): if id == "llama-4-maverick-17b": options = ['meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'] model = random.choice(options) return model elif id == "llama-4-scout-17b": options = ['meta-llama/Llama-4-Scout-17B-16E-Instruct', 'meta-llama/llama-4-scout-17b-16e-instruct'] model = random.choice(options) return model elif id == "llama-3.1-8b": options = ['llama-3.1-8b-instant'] model = random.choice(options) return model elif id == "llama-3.3-70b": options = ['meta-llama/Llama-3.3-70B-Instruct-Turbo', 'llama-3.3-70b-versatile', 'meta-llama/Llama-3.3-70B-Instruct-Turbo'] model = random.choice(options) return model elif id == "deepseek-r1": options = ['deepseek-ai/DeepSeek-R1', 'deepseek-r1-distill-llama-70b', 'deepseek-ai/DeepSeek-R1-Turbo', 'deepseek-ai/DeepSeek-R1-Distill-Llama-70B', 'deepseek-ai/DeepSeek-R1-Distill-Qwen-32B'] model = random.choice(options) return model elif id == "deepseek-v3": options = ['deepseek-ai/DeepSeek-V3'] model = random.choice(options) return model elif id == "qwen-2.5-72b": options = ['Qwen/Qwen2.5-VL-72B-Instruct', 'Qwen/Qwen2.5-72B-Instruct'] model = random.choice(options) return model elif id == "gemma-2-27b": options = ['google/gemma-2-27b-it'] model = random.choice(options) return model elif id == "grok-3": options = ['grok-3'] model = random.choice(options) return model elif id == "grok-3-fast": options = ['grok-3-fast'] model = random.choice(options) return model elif id == "grok-3-mini": options = ['grok-3-mini'] model = random.choice(options) return model elif id == "grok-3-mini-fast": options = ['grok-3-mini-fast'] model = random.choice(options) return model elif id == "grok-2-1212": options = ['grok-2-1212'] model = random.choice(options) return model