from fastapi import FastAPI, Request from fastapi.responses import StreamingResponse from fastapi.middleware.cors import CORSMiddleware from models.text.together.main import TogetherAPI from models.text.vercel.main import XaiAPI, GroqAPI, DeepinfraAPI from models.image.vercel.main import FalAPI from models.image.together.main import TogetherImageAPI from models.text.deepinfra.main import OFFDeepInfraAPI from models.fetch import FetchModel from auth.key import NimbusAuthKey from tools.googlesearch.main import search from tools.fetch import Tools app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # Allows all origins allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) @app.get("/") async def root(): return {"status":"ok", "routes":{"/":"GET", "/api/v1/generate":"POST", "/api/v1/models":"GET", "/api/v1/generate-images":"POST"}, "models": ["text", "image"]} @app.post("/api/v1/generate") async def generate(request: Request): data = await request.json() messages = data['messages'] model = data['model'] if not messages or not model: return {"error": "Invalid request. 'messages' and 'model' are required."} try: query = { 'model': model, 'max_tokens': None, 'temperature': 0.7, 'top_p': 0.7, 'top_k': 50, 'repetition_penalty': 1, 'stream_tokens': True, 'stop': ['<|eot_id|>', '<|eom_id|>'], 'messages': messages, 'stream': True, } together_models = TogetherAPI().get_model_list() xai_models = XaiAPI().get_model_list() groq_models = GroqAPI().get_model_list() deepinfra_models = DeepinfraAPI().get_model_list() if model in together_models: streamModel = TogetherAPI() elif model in xai_models: streamModel = XaiAPI() elif model in groq_models: streamModel = GroqAPI() elif model in deepinfra_models: streamModel = DeepinfraAPI() else: return {"error": f"Model '{model}' is not supported."} response = streamModel.generate(query) return StreamingResponse(response, media_type="text/event-stream") except Exception as e: return {"error": f"An error occurred: {str(e)}"} @app.get("/api/v1/models") async def get_models(): try: models = { 'text': { 'together': TogetherAPI().get_model_list(), 'xai': XaiAPI().get_model_list(), 'groq': GroqAPI().get_model_list(), 'deepinfra': DeepinfraAPI().get_model_list(), "official_deepinfra": OFFDeepInfraAPI().get_model_list() }, 'image': { 'fal': FalAPI().get_model_list(), 'together': TogetherImageAPI().get_model_list() } } return {"models": models} except Exception as e: return {"error": f"An error occurred: {str(e)}"} @app.post('/api/v1/generate-images') async def generate_images(request: Request): data = await request.json() prompt = data['prompt'] model = data['model'] print(model) fal_models = FalAPI().get_model_list() together_models = TogetherImageAPI().get_model_list() if not prompt or not model: return {"error": "Invalid request. 'prompt' and 'model' are required."} if model in fal_models: streamModel = FalAPI() elif model in together_models: streamModel = TogetherImageAPI() else: return {"error": f"Model '{model}' is not supported."} try: query = { 'prompt': prompt, 'modelId': model, } response = await streamModel.generate(query) return response except Exception as e: return {"error": f"An error occurred: {str(e)}"} @app.get('/api/v1/fetch-models') async def fetch_models(): model = FetchModel() return model.all_models() @app.post('/api/v1/text/generate') async def text_generate(request: Request): data = await request.json() messages = data['messages'] choice = data['model'] api_key = data.get('api_key') auth = NimbusAuthKey() user = auth.get_user(data.get('api_key')) if not user: return {"error": "Invalid API key"} if not api_key: return {"error": "API key is required"} if not messages or not choice: return {"error": "Invalid request. 'messages' and 'model' are required."} model = FetchModel().select_model(choice) if not model: return {"error": f"Model '{choice}' is not supported."} try: query = { 'model': model, 'max_tokens': None, 'temperature': 0.7, 'top_p': 0.7, 'top_k': 50, 'repetition_penalty': 1, 'stream_tokens': True, 'stop': ['<|eot_id|>', '<|eom_id|>'], 'messages': messages, 'stream': True, } together_models = TogetherAPI().get_model_list() xai_models = XaiAPI().get_model_list() groq_models = GroqAPI().get_model_list() deepinfra_models = DeepinfraAPI().get_model_list() official_deepinfra_models = OFFDeepInfraAPI().get_model_list() if model in together_models: streamModel = TogetherAPI() elif model in xai_models: streamModel = XaiAPI() elif model in groq_models: streamModel = GroqAPI() elif model in deepinfra_models: streamModel = DeepinfraAPI() elif model in official_deepinfra_models: streamModel = OFFDeepInfraAPI() else: return {"error": f"Model '{model}' is not supported."} response = streamModel.generate(query) return StreamingResponse(response, media_type="text/event-stream") except Exception as e: return {"error": f"An error occurred: {str(e)}"} @app.get('/api/v1/tools') async def tools(): return Tools.fetch_tools() @app.get('/api/v1/tools/google-search') async def searchtool(request: Request): data = await request.json() query = data['query'] num_results = data.get('num_results', 10) response = search(term=query, num_results=num_results, advanced=True, unique=False) return response