import gradio as gr import matplotlib.pyplot as plt import IPython.display as ipd import os import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import commons import utils from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence from scipy.io.wavfile import write import numpy as np # 加载情感字典 emotion_dict = json.load(open("configs/leo.json", "r")) # 加载预训练模型 hps = utils.get_hparams_from_file("./configs/leo.json") net_g = SynthesizerTrn(len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint("logs/leo/G_4000.pth", net_g, None) # 定义文本转语音函数 def tts(txt, emotion, roma=False, length_scale=1): if roma: stn_tst = get_text_byroma(txt, hps) else: stn_tst = get_text(txt, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) sid = torch.LongTensor([0]) if emotion == "random_sample": # 随机选择一个情感参考音频 random_emotion_root = "wavs" while True: rand_wav = random.sample(os.listdir(random_emotion_root), 1)[0] if rand_wav.endswith('wav') and os.path.exists(f"{random_emotion_root}/{rand_wav}.emo.npy"): break emo = torch.FloatTensor(np.load(f"{random_emotion_root}/{rand_wav}.emo.npy")).unsqueeze(0) print(f"{random_emotion_root}/{rand_wav}") elif emotion.endswith("wav"): # 从提供的音频中提取情感特征 import emotion_extract emo = torch.FloatTensor(emotion_extract.extract_wav(emotion)) else: print("emotion参数不正确") audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1.2, emo=emo)[0][0, 0].data.float().numpy() ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False)) # 创建GUI界面 def run_tts(text, emotion, roma=False): tts(text, emotion, roma) inputs = [ gr.inputs.Textbox(label="请输入文本"), gr.inputs.Textbox(label="请输入参考音频路径或选择'random_sample'随机选择"), gr.inputs.Checkbox(label="是否使用音素合成") ] outputs = gr.outputs.Audio(label="合成音频") interface = gr.Interface(fn=run_tts, inputs=inputs, outputs=outputs, title="中文文本转语音") interface.launch()