import tensorflow as tf import numpy as np def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding_1d(position, d_model): angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model) # apply sin to even indices in the array; 2i angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) # apply cos to odd indices in the array; 2i+1 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) pos_encoding = angle_rads[np.newaxis, ...] return tf.cast(pos_encoding, dtype=tf.float32) def positional_encoding_2d(row,col,d_model): assert d_model % 2 == 0 # first d_model/2 encode row embedding and second d_model/2 encode column embedding row_pos = np.repeat(np.arange(row),col)[:,np.newaxis] col_pos = np.repeat(np.expand_dims(np.arange(col),0),row,axis=0).reshape(-1,1) angle_rads_row = get_angles(row_pos,np.arange(d_model//2)[np.newaxis,:],d_model//2) angle_rads_col = get_angles(col_pos,np.arange(d_model//2)[np.newaxis,:],d_model//2) #apply sin and cos to odd and even indices resp. angle_rads_row[:, 0::2] = np.sin(angle_rads_row[:, 0::2]) angle_rads_row[:, 1::2] = np.cos(angle_rads_row[:, 1::2]) angle_rads_col[:, 0::2] = np.sin(angle_rads_col[:, 0::2]) angle_rads_col[:, 1::2] = np.cos(angle_rads_col[:, 1::2]) pos_encoding = np.concatenate([angle_rads_row,angle_rads_col],axis=1)[np.newaxis, ...] return tf.cast(pos_encoding, dtype=tf.float32) def create_padding_mask(seq): seq = tf.cast(tf.math.equal(seq, 0), tf.float32) # add extra dimensions to add the padding # to the attention logits. return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len) def create_look_ahead_mask(size): mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) return mask # (seq_len, seq_len) def create_masks_decoder(tar): look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1]) dec_target_padding_mask = create_padding_mask(tar) combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask) return combined_mask def scaled_dot_product_attention(q, k, v, mask): """Calculate the attention weights. q, k, v must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: q: query shape == (..., seq_len_q, depth) k: key shape == (..., seq_len_k, depth) v: value shape == (..., seq_len_v, depth_v) mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Returns: output, attention_weights """ matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k) # scale matmul_qk dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) # add the mask to the scaled tensor. if mask is not None: scaled_attention_logits += (mask * -1e9) #adding -Inf where mask is 1 s.t. value get ignored in softmax # softmax is normalized on the last axis (seq_len_k) so that the scores # add up to 1. attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k) output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v) return output, attention_weights